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What is machine learning (ML)?

• Subfield of artificial intelligence (AI)
“AI is a field concerned with intelligent behavior in artifacts.” 

– Nilsson 1998

• AI is not a thing/object.
• The thing/object using AI methods is called an agent.

• Agent: Something that acts, from Latin agere, which means “to do.”
• E.g., a robot or software program

Like math, physics or theology

agents
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ML is a subfield of AI

• ML is a subfield of AI “concerned with the question of how to 
construct computer programs that automatically improve with 
experience.” [Tom Mitchell, 1997]

• Improve = learn
• Experience = data
• Computer = unnecessary

AI

ML

1950s – 1980s

AI
ML

2000s – present
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Data & Supervised Learning

• Different subfields of ML assume access to different kinds of data.
• During the first part of the course, we will focus on supervised 

learning problems.
• These are problems where the data is a set of points, and so it is 

called a data set or dataset.
• Each point consists of a pair of inputs and outputs.
• Given a data set of such input-output pairs, a supervised learning 

algorithm learns to predict the output given the input, even for 
points not in the data set.
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Data Set Notation

• 𝑋: Input (also called features, attributes, covariates, or 
predictors)
• Typically, 𝑋 is a vector, array, or list of numbers or strings.

• 𝑌: Output (also called labels or targets)
• Typically, 𝑌 is a single number or string.

• An input-output pair is (𝑋, 𝑌).
• Let 𝑛, called the data set size or size of the data set, be the 

number of input-output pairs in the data set.
• Let 𝑋𝑖 , 𝑌𝑖  denote the 𝑖th input output pair.
• The complete data set is 

𝑋𝑖 , 𝑌𝑖 𝑖=1
𝑛 = 𝑋1, 𝑌1 , 𝑋2, 𝑌2 , … , 𝑋𝑛, 𝑌𝑛 .

5



Feature Types

• Numerical
• Continuous: Features that can take any value in a range, like temperature or 

velocity.
• Discrete: Features that take a countable number of distinct values, like the 

number of cats a person owns. (Binary features are a special case.)

• Categorical (discrete, but not numbers)
• Nominal: Unordered categories like colors (red, green, blue) or genre (drama, 

comedy, science fiction, etc.).
• Ordinal: Categories with a specific order like educational level (high school, 

bachelor’s, master’s) or military rank (private, specialist, corporal, etc.)

• Text/String
• Image
• Other
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Feature Types

• Non-numerical features are often converted into numerical 
features to make them easier to work with.
• Categorical features map to integers: “Sunday”→0, “Monday”→1, 

“Tuesday”→2, etc.
• Images can be converted to sequences of (r,g,b) values describing each 

pixel.
• Text can be converted to discrete or continuous features

• Discrete: Each word (or part of a word) maps to a unique integer.
• Each basic unit of text (word, character, or subword) is called a token.

• Continuous: Each word can be mapped to a vector of real numbers. This is called a 
word embedding. Ideally, similar words are mapped to similar vectors of numbers. 
Word embeddings are themselves learned from data.
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Regression and Classification

• Within supervised learning, recall that a data set is a set of input-
output pairs (X, Y).

• Regression: 𝑌 is a continuous number.
• Multivariate Regression: 𝑌 is a vector. That is, 𝑌 ∈ ℝ𝑚 and 𝑚 > 1.

• Classification: 𝑌 is categorical (mapped to an integer).
• Binary Classification: 𝑌 ∈ 0,1  or 𝑌 ∈ −1,1 .
• Multi-Class Classification: 𝑌 ∈ 0,1, … , 𝑘 .
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Nearest Neighbor

• A particularly simple yet effective ML algorithm based on the core idea:
 When presented with a query, find the data point (row) that is 

most similar to the query and give the label associated with 
this most-similar point as the prediction.

• We can map this to fit/predict functions:
• fit: Store the data
• predict: For each query row do the following

• Loop over each row in the training data, computing the Euclidean distance between the 
query and the row.

• Create an array holding the labels from the rows with the smallest distance to the query 
feature vector (often just one element).

• Return an arbitrary (e.g., random) element of the array.
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Evaluation Metrics (Regression)

• Mean Error: 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Rarely what you want.
• Allows positive and negative errors to cancel each other out.

• Mean Squared Error (MSE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

• Very common choice.
• Gives a higher weight to larger errors, making it sensitive to outliers. It’s 

useful when large errors are particularly undesirable.

• Root Mean Squared Error (RMSE): MSE
• Has the same units as the target variable (unlike MSE).
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Evaluation Metrics (Regression, cont.)

• Mean Absolute Error (MAE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Like MSE, but with less emphasis on outliers.

• R-squared (𝑅2): 1 −
σ𝑖=1

𝑛 𝑦𝑖− ො𝑦𝑖
2

σ𝑖=1
𝑛 𝑦𝑖− ത𝑦 2 , where ത𝑦 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖  .

• Also called the coefficient of determination.
• Indicates the proportion of the variance of the dependent variable (labels) 

that is predictable from the independent variables (predictions).
• Larger is better (maximum possible is one).
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𝑘-Nearest Neighbors (k-NN)

• Idea: Average the labels of the 𝑘 nearest points
• Pseudocode:

• Find the 𝑘 nearest neighbors to the query point.
• Called the “nearest neighbors”
• If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

• Set the prediction to be the average label of these 𝑘 nearest neighbors.

• Code:

Hyperparameter, 
default value 𝑘 = 3
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Weighted 𝑘-Nearest Neighbor

• Let 𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁  be the 𝑖th nearest neighbor
• Let 𝑤𝑖  be the weight associated with this point

• We consider only non-negative weights: 𝑤𝑖 ≥ 0.
• We describe how 𝑤𝑖  can be computed on future slides.

• Weighted 𝑘-NN predicts the label:

ො𝑦 =
σ𝑖=1

𝑘 𝑤𝑖𝑦𝑖
𝑁𝑁

σ𝑗=1
𝑘 𝑤𝑗

 

• This is equivalent to:

ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

Why do we divide by the sum of the 
weights?
• So that the weights sum to one.
• This keeps the prediction at the same 

“scale” as the labels.
• Example: If 𝑘 = 2, 𝑤1 = 1 and 𝑤2 = 1, 

and the division by the sum of weights 
is dropped.
• The prediction is 2 ×  too big!

• Dividing by the sum of the weights 
makes this a weighted average.13



Gaussian Kernel

• The re-scaled probability density function (PDF) of a normal distribution.
• PDF of a normal distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2

• Mean 𝜇 = 0
• Standard deviation 𝜎 (a hyperparameter)

• Normalizing the weights makes the constant 1

𝜎 2𝜋
 cancel out in each weight. 

Hence:

𝑤𝑖 = 𝑒
−

𝑥2

2𝜎2

• We use 𝑥 = dist 𝑥𝑖
𝑁𝑁 , 𝑥query  giving:

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁,𝑥query

2

2𝜎2
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Tuning Hyperparameters

• How should we set 𝑘 and 𝜎?
• Idea: Enumerate a “grid” of possible values.

• Try all possible combinations of values of 𝑘 in k_values and 𝜎 
in sigma_values.
• If plotted as points where the horizontal axis is 𝑘 and the vertical is 𝜎 (or 

vice versa), the points would form a grid.
• Hence, called “Grid Search”

• Select the values that result in the best evaluation
15



Tuning Hyperparameters

• Grid search is common due to its simplicity.
• Research suggests that randomized searches may be more 

principled.
• Randomly sample each hyperparameter from some distribution
• Typically run for some fixed number of hyperparameter settings
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Train/Validation/Test Sets

• Validation sets are often used to automatically tune 
hyperparameters.

• The data is split into three sets: train, evaluation, and test. The 
following procedure is then used:
• For each hyperparameter setting:

• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on 
the validation set.

• Train a model using all the training and validation data and the 
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.
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Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k 

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.
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Mean Squared Error (revisited)

• The MSE is:
MSE = 𝐄 𝑌 − ෠𝑌𝑖

2
.

• This is a parameter or population statistic.
• The sample MSE is:

෣MSE𝑛 =
1

𝑛
෍

𝑖=1

𝑛

𝑌𝑖 − ෠𝑌𝑖
2

 or 
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑦𝑖
2 .

• This is a statistic or sample statistic.
• The “hat” means “an estimate” and the 𝑛-subscript indicates it is computed 

from 𝑛 samples.
• Our goal is typically to optimize a parameter.

• We don’t know this parameter’s value.
• In an attempt to achieve this goal, we use sample statistics.

• We can compute sample statistics from data! 19



Confidence Interval

• We will use the number of samples and their variance to construct a 
confidence interval for the parameter (e.g., MSE) based on the sample 
statistic (sample MSE).

• A confidence interval is an interval (range of numbers) that contains a 
parameter with a specified confidence, 1 − 𝛿.

• If [𝐿, 𝑈] is a 1 − 𝛿 confidence interval for the mean 𝜇, then
Pr 𝐿 ≤ 𝜇 ≤ 𝑈 ≥ 1 − 𝛿.

• Question: What is random in this statement of probability?
• Answer: The confidence interval is random! It is typically computed 

from data. Different samples of data result in different lower and upper 
bounds.
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Standard Error

• One common way to obtain a confidence interval is using standard error.
• Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a sequence of 𝑛 numbers.
• Let 𝜎 be the sample standard deviation of this sequence (with Bessel’s 

correction):

𝜎 =
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 2

𝑛 − 1
,

ҧ𝑥 =
1

𝑛
෍

𝑖=1

𝑛

 𝑥𝑖

• The standard error is then
SE =

𝜎

𝑛
.
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Using Standard Error

• If 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 random variables and:
• The random variables are i.i.d. with mean 𝜇.
• The random variables are each normally distributed.

• ത𝑋 =
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖  is the sample mean.

• Then ത𝑋 − 1.96 × SE, ത𝑋 + 1.96 × SE  is a 95% confidence interval 
for 𝜇. 

• That is:
Pr ത𝑋 − 1.96 × SE ≤ 𝜇 ≤ ത𝑋 + 1.96 × SE ≥ 0.95.
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Mean Squared Error (re-revisited)

• MSE: MSE = 𝐄 𝑌 − ෠𝑌𝑖
2

.

• Sample MSE: ෣MSE𝑛 =
1

𝑛
σ𝑖=1

𝑛 𝑌𝑖 − ෠𝑌𝑖
2

.

• Let 𝑍𝑖 = 𝑌𝑖 − ෠𝑌𝑖
2

.
• Notice that 𝜇 = 𝐄 𝑍𝑖 = MSE, and let SE be the standard error of 

𝑍1, 𝑍2, … , 𝑍𝑛.
• So, ෣MSE𝑛 ± 1.96 × SE is a 95% confidence interval for the actual 

MSE (under normality assumptions).
• Although normality assumptions often false, this gives a rough idea of 

how much the sample MSE can be trusted.
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We can be somewhat confident that the model learned by NN is worse than the 
model learned by k-NN (𝑘 = 100) and weighted k-NN (𝑘 = 110, 𝜎 = 90).

We cannot be confidence about k-NN vs weighted k-NN.

Note: Always check for the meaning of the ± value! Standard error, standard 
deviation, and confidence intervals all have very different meanings!

±1.96 × SE
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Model Evaluation (Review)

• Often ML texts evaluate models by doing the following:
• Partition the data into train/test.
• Train the model on the training data.
• Evaluate the model on the testing data.
• Report a performance metric and a number representing the uncertainty 

in this performance metric.
• Format: performance ±uncertainty
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Algorithm Evaluation (Ideal)
In practice, we can’t do 
this step!
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Cross-Validation

• Idea: Repeatedly define different parts of the data set to be training and 
testing data.
• Different training sets result in different models.
• The testing set for each model will always be independent of the data used to 

train the model.

• To do this, we will split the data 𝐷 into 𝑘 equally-sized subsets.
• Each of these subsets is called a fold.
• This 𝑘 is not related to the 𝑘 in nearest neighbor.

• We will train on all but one fold and test on the held-out fold.
• These individual evaluations on test sets containing one fold have high variance!
• We can average these high-variance evaluations to obtain a better estimate of 

performance.
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Entire Data Set

𝑘 folds
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Entire Data Set

𝑘 folds

Test Train

𝑃1

Performance
Prediction

𝑃2

𝑃3

Repeat for 𝑃1, … , 𝑃𝑘 Performance Estimate = mean(𝑃1, … , 𝑃𝑘) Uncertainty quantification = SE(𝑃1, … , 𝑃𝑘)
29



K-Fold Cross-Validation Pseudocode
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Leave-One-Out (LOO) Cross-Validation

• The number of folds equals the number of points in the data set.
• Each test set contains only a single point!
• Provides the best estimates of performance.
• Often too computationally intensive to perform.
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Linear Regression

• Search for the line that is a best fit to the data.
• Different performance measures correspond to different ways of 

measuring the quality of a fit.
• Sample mean squared error, or the sum of the squared errors is 

particularly common:
෣MSE𝑛:

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 and SSE: σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2 

• Although not identical, the line that minimizes one also minimizes the 
other.

• Using sample MSE, this method is called “least squares linear 
regression.”
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Linear Regression: What is a line?

𝑦 = 𝑚𝑥 + 𝑏

ො𝑦 = 𝑤1𝑥𝑖 + 𝑤2

Prediction, ෝ𝑦𝑖 Input, 𝑥𝑖Slope, 𝑚 y-intercept, 𝑏

“weights,” or “parameters”, 𝑤 = 𝑤1, 𝑤2
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Models (Review)

• A model is a mechanism that maps input data to predictions.
• ML algorithms take data sets as input and produce models as 

output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for 
each feature vector in the 
query.
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Parametric Model

• A model “parameterized” by a weight vector 𝑤.
• Different settings of 𝑤 result in different predictions.
• Let ො𝑦 =  𝑓𝑤 𝑥

• 1-dimensional linear case:
𝑓𝑤(𝑥) = 𝑤1𝑥 + 𝑤2

• 𝑑-dimensional linear case:
𝑓𝑤 𝑥𝑖 = 𝑤1𝑥𝑖,1 + 𝑤2𝑥𝑖,2 + … + 𝑤𝑑𝑥𝑖,𝑑

• We can write this as:

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗  𝑥𝑖,𝑗 .

• This is called a dot product and can be written as 𝑤 ⋅ 𝑥𝑖  or 𝑤𝑇𝑥𝑖.
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Linear Regression: Optimization Perspective

• Given a parametric model 𝑓𝑤  of any form how can we find the weights 𝑤 that 
result in the “best fit”?

• Let 𝐿 be a function called a loss function.
• It takes as input a model (or model weights 𝑤)
• It also takes as input data 𝐷
• It produces as output a real-number describing how bad of a fit the model is to the 

provided data.
• The evaluation metrics we have discussed can be viewed as loss functions. 

For example, the sample MSE loss function is:

𝐿 𝑤, 𝐷 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2 =

1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑓𝑤 𝑥𝑖
2

• We phrase this as an optimization problem:
argmin𝑤 𝐿(𝑤, 𝐷) 

For the sample MSE loss 
function, this can be any 
parametric model, not 
just a linear one!
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Linear Regression: Optimization Perspective

argmin𝑤 𝐿(𝑤, 𝐷)

• Recall: argmin returns the 𝑤 that achieves the minimum value of 
𝐿(𝑤, 𝐷), not the minimum value of 𝐿(𝑤, 𝐷) itself.

• This expression describes a massive range of ML methods.
• Supervised, unsupervised, (batch/offline) RL
• Deep neural networks
• Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
• Different loss functions
• Different parametric models.
• Different algorithms for approximating the best weight vector 𝑤.
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Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑤 𝑥𝑖  that are linear functions 
of the weights 𝒘.

• They need not be linear functions of the input 𝑥𝑖.

Input 𝑥𝑖
Feature 

generator 𝜙

Note: The input 𝑥𝑖  is 
a vector – an array 
of values.

Feature 1: 
𝜙1 𝑥𝑖

Feature 2: 
𝜙2 𝑥𝑖

Feature m: 
𝜙𝑚 𝑥𝑖

…

Each feature is a real number 
(not a vector or array)

Linear Regression:
𝑓𝑤 𝑥𝑖 = 𝑤1𝜙1 𝑥𝑖 + 𝑤2𝜙2 𝑥𝑖 + ⋯

Prediction, ො𝑦𝑖

Note: This is equivalent to pre-processing the data, 
converting 𝑥𝑖  (length 𝑑) into 𝜙 𝑥𝑖   (length 𝑚)

Note: Each feature can depend on more than one 
element of 𝑥𝑖. So, this is 𝜙1 𝑥𝑖  not 𝜙1 𝑥𝑖,1 .
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Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑤 𝑥𝑖  that are linear 
functions of the weights 𝒘.

• They need not be linear functions of the input 𝑥𝑖.
• That is, a linear parametric model has the form:

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑚

𝑤𝑗𝜙𝑗 𝑥𝑖 ,

where 𝜙 takes the input vector 𝑥𝑖  as input and produces a vector of 𝑚 
features as output. That is, 𝜙𝑗 𝑥𝑖  is the 𝑗th feature output by 𝜙.

• 𝜙 is called the basis function, feature generator, or feature mapping 
function. 
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Multivariate Polynomial Basis

• How does the polynomial basis, 𝜙, work if 𝑥 is multidimensional (an array 
rather than a number?)

• Multivariate polynomial on inputs 𝑥, 𝑦:
𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 + 𝑒𝑥2 + 𝑓𝑦2 + 𝑔𝑥𝑦2 + ℎ𝑥2𝑦 + 𝑖𝑥3 + ⋯

• Multivariate polynomial on input 𝑥𝑖,1, 𝑥𝑖,2:
𝑤1 + 𝑤2𝑥𝑖,1 + 𝑤3𝑥𝑖,2 + 𝑤4𝑥𝑖,1𝑥𝑖,2 + 𝑤5𝑥𝑖,1

2 + 𝑤6𝑥𝑖,2
2 + 𝑤7𝑥𝑖,1𝑥𝑖,2

2 + 𝑤8𝑥𝑖,1
2 𝑥𝑖,2

2 + 𝑤9𝑥𝑖,1
3 + ⋯

• The expression above is 𝑓𝑤 𝑥𝑖  for a linear parametric model using the 
multivariate polynomial basis.

• Notice that some 𝜙𝑗 𝑥𝑖  terms depend on more than one element of 𝑥𝑖!
• This term is 𝑤8𝜙8 𝑥𝑖
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Fourier Basis

• Each 𝜙𝑗  is a cosine function with a different period.
• Can optionally include both sine and cosine functions.

• Univariate:
• 𝜙𝑗 𝑥𝑖 = cos(𝑗𝜋𝑥)

• Approximation of a step function (from Wikipedia “Fourier series” 
page)
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Parametric vs Nonparametric

• ML algorithms are often categorized into parametric and 
nonparametric.
• In general:

• Parametric methods use parameterized functions with weights 𝑤.
• Nonparametric methods store the training data or statistics of the training data.

• More precisely
• Parametric:

• Have a fixed number of weights 𝑤.
• Tend to make specific assumptions about the form of the function.

• Nonparametric:
• Do not make explicit assumptions about the form of the function.
• Number of values stored tends to vary with the amount of training data (e.g., storing data).

• There is some debate about whether some methods are parametric or 
nonparametric.
• Linear regression and regression with linear parametric are canonical examples of 

parametric.
• Nearest neighbor algorithms are canonical examples of nonparametric.
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Optimization Perspective

• Recall:
argmin𝑤 𝐿 𝑤, 𝐷

• Viewing 𝐿(𝑤, 𝐷) as a function, 𝑓, of just the weights (and a fixed data set):
argmin𝑤 𝑓 𝑤

• Note that this is equivalent to maximizing a different function, where 𝑔 = −𝑓
argmax𝑤 𝑔 𝑤

• We could also write 𝑥 instead of 𝑤:
argmin𝑥 𝑓 𝑥

• The function being optimized (minimized or maximized) is called the 
objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?
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Local Search Methods

• Start with some initial input, 𝑥0

• Search for a nearby input, 𝑥1, that decreases 𝑓:
𝑓 𝑥1 < 𝑓 𝑥0

• Repeat, finding a nearby input 𝑥𝑖+1 that decreases 𝑓 (for each 
iteration 𝑖):

𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓
• The decrease in 𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally 
around some current point, 𝑥𝑖. 44



“Find a nearby point that decreases 𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥, we can query:

• 𝑓 𝑥 : The value of the objective function at the point

•
𝑑𝑓(𝑥)

𝑑𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓(𝑥)
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Local minimum: A location where all nearby 
(adjacent) points have higher values.

Global minimum: A location where the function 
achieves the lowest value (the argmin). 

Question: Is a global minimum a local minimum?
Answer: Yes!
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𝑥𝑖 = 7

Question: How can we find a point 𝑥𝑖+1 such that 𝑓 𝑥𝑖+1 < 𝑓 𝑥𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”
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Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑖  to get 𝑥𝑖+1. Negative slope: Increase 𝑥𝑖  to get 𝑥𝑖+1.
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Gradient Descent

• Take a step of length 𝛼 (a small positive constant) in the opposite 
direction of the slope:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼 × slope.

• Note: The slope is 𝑑𝑓(𝑥)

𝑑𝑥
, so we can write:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝑑𝑓(𝑥)

𝑑𝑥
.

• 𝛼 is a hyperparameter called the step size or learning rate.

49



Gradient descent, 𝑥0 = 7, 𝛼 = 0.001
𝑓 𝑥 = 𝑥4 − 14𝑥3 + 60𝑥2 − 70𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼?50



The Gradient (multi-dimensional setting)

Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑥

𝑦-slope: 𝜕𝑓 𝑥,𝑦

𝜕𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓 𝑥 =
𝜕𝑓 𝑥, 𝑦

𝜕𝑥
,
𝜕𝑓 𝑥, 𝑦

𝜕𝑦

Note: The gradient is also called 
the “direction of steepest 
ascent”. It indicates how to 
change each input to go up-hill as 
quickly as possible.

Gradient Descent: Move both 𝑥 
and 𝑦 in the negative direction of 
their slopes. That is, move in the 
opposite direction of the gradient:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑥𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝛼
𝜕𝑓 𝑥𝑖 , 𝑦𝑖

𝜕𝑦𝑖

OR
𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 − 𝛼∇𝑓(𝑥𝑖 , 𝑦𝑖)51



Pseudocode: Gradient Descent on 𝑓(𝑥)

• Hyperparameter: Step size 𝛼. Typically a small constant like 
0.1, 0.01, 0.001, …

• Assumption: 𝑓 is a function that takes a vector (or single real number) 
as input, and produces a single real number as output.

• Assumption: 𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥0 (a vector).
• For each iteration 𝑖, set 𝑥𝑖+1 = 𝑥𝑖 − 𝛼∇𝑓 𝑥𝑖 . Equivalently, for each element of 𝑥𝑖  

(indexed by 𝑗):

𝑥𝑖+1,𝑗 = 𝑥𝑖,𝑗 − 𝛼
𝜕𝑓 𝑥𝑖

𝜕𝑥𝑖,𝑗

• Stop when progress becomes slow or after some fixed amount of time.
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Manual derivation of gradient
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Missing Data

• Question: What can we do if some values are missing in the data set?
• Example: Some students are missing exam scores.

• Answer 1: Remove rows with missing values.
• This can add bias when there is a correlation between when points are missing 

and other features/labels.
• This can be effective when only a few rows are missing values.

• Answer 2: Use imputation techniques.
• Replace missing values with the mean or median feature value.
• Replace missing values with the feature values from the nearest neighbor (or 𝑘 

nearest neighbors).
• Use more sophisticated techniques to estimate the missing values.
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One Hot Encoding

• One hot encoding is a common strategy to avoid assigning meaning to 
the encoding of categorical features.

• If the feature has 𝑚 possible values, it is converted into 𝑚 features.
• One column is converted into 𝑚 columns.

• The value of the 𝑗th new feature is 1 if the original feature took its 𝑗th 
value, and 0 otherwise.

• Example: Original feature: “red”, “green”, “blue”
• Three new features, “is red”, “is green”, and “is blue”
• If “red”, the three new features have values [1, 0, 0]
• If “green”, the three new features have values [0, 1, 0]
• If “blue”, the three new features have values [0, 0, 1]
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Feature Scaling

• When features have very different scales, it can cause problems for 
some ML algorithms.
• Question: Consider a data set with income (range 0 to 1 million) and age (range 

0 to 100). If we use nearest neighbor algorithms with Euclidean distance, what 
will happen?

• Answer: Points with (relatively) slightly different incomes will be viewed as far 
apart relative to points with different ages. 

• Note: This is not unique to nearest neighbors algorithms. Most ML algorithms 
can struggle when features have very different scales.

• When all features have a very large or small scale, it can change the 
necessary hyperparameters in unintuitive ways.
• Example: The step size for running gradient descent to fit a linear parametric 

model, using the second-degree polynomial basis, to the GPA data set (see 
Data Cleaning Intro.ipynb).
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Feature Scaling

• Idea: Re-scale features.
• Approach 1 (Min-Max Scaling): Normalize to the range [0,1]

• 𝑥normalized = (𝑥unnormalized − min)/(max − min)
• Scikit-learn includes “Scalers” that perform common feature rescaling.
• The fit_transform function “fits” the scaler to the data (e.g., calculating min 

and max values of features) and then “transforms” the data (applies the 
specified rescaling). 

• Approach 2 (Standardization):
• Centers the feature (so the average is zero)
• Rescales the feature so that the standard deviation is 1
• 𝑥normalized = (𝑥unnormalized − mean)/(standard deviation)

• Several others (robust scaling, normalization, etc.)
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Question: How can we make this model non-
linear w.r.t. the model parameters (weights 𝑤)?

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖
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Answer: One way is to apply a non-linear 
function, 𝜎, to the output.

𝑓𝑤 𝑥𝑖 = 𝜎 ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎

Question: Would 𝜎 𝑧 = 5𝑧 
work?
Answer: No, this is a linear 
function. This would be 
equivalent to multiplying 
each weight by 5. It doesn’t 
change the functions that can 
be represented.

Question: Would 𝜎 𝑧 = 𝑧2 
work?
Answer: Yes, this would 
result in a non-linear 
parametric model.

𝑓𝑤 𝑥𝑖 = ෍

𝑗=1

𝑑

𝑤𝑗𝑥𝑖,𝑗

2

Note: The function 𝜎 is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear 𝜎) is called a perceptron. 59



Perceptron

Output from 
previous neurons

Dendrites

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎Σ

Cell 
Body

Axon

Perceptrons can be viewed as 
extremely crude simulations of 
neurons.
• Roughly speaking (ignoring 

important aspects of biology and 
neuroscience), when enough of 
the inputs to a neuron are 
activated, the neuron becomes 
sufficiently stimulated and “fires” 
(it becomes activated).

• We can select 𝜎 to be similar to a 
threshold function. 
• If the weighted sum is below 

some threshold for the neuron 
to be activated, 𝜎 outputs 0 
(not firing). 

• If the weighted sum is above 
the threshold, 𝜎 outputs 1 
(firing).

The “activation function” decides 
whether the “neuron” is firing 
based on the weighted sum.60



𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,3

…

𝑥𝑖,𝑑

𝑤1

𝑤2

𝑤3

…

𝑤4

𝑓𝑤 𝑥𝑖𝜎Σ

Threshold ≈ 15

Note: This model 
typically outputs 0 or 
1, which may not be 
what we want for our 
parametric model. We 
will revisit this later.

Note: 𝜎 squashes the 
output to the range 
[0,1], hence the name 
squashing function. 61



Neural Networks: Parametric Models 
Comprised of Many Perceptrons
• Recall the graphical representation:

• Idea: Connect many perceptrons together.

𝑥𝑖 𝑓𝑤 𝑥𝑖

𝑥𝑖

… …

This is tedious and 
too many arrows!
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Neural Network Graphical Depiction

𝑥𝑖

… …

Idea: Use boxes to represent 
layers (columns) of perceptrons.

𝑥𝑖
…

Here arrows between boxes 
denote fully connected layers.
• Each perceptron in the right-

layer takes the output of each 
perceptron in the left-layer as 
input. 63



Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• In the context of neural networks, perceptrons are often called 
units.

• Each layer can have different numbers of units.
• The number of units in a layer is often called the “size” of the layer.

Layer 1 Layer 2 Layer 3 Layer L

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The input, 𝑥𝑖  is called the input layer.
• The last layer is called the output layer.
• All layers between the input and output layers are called hidden 

layers.

First 
Hidden 

Layer

Input 
Layer

Second 
Hidden 
Layer

Third 
Hidden 

Layer

Output 
Layer

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• Sometimes the input layer is represented by its own rectangle.
• This layer simply outputs 𝑥𝑖.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• The number of units in the output layer should equal the number 
of outputs of 𝑓𝑤 𝑥𝑖

• For the GPA-prediction task, 𝑥𝑖 ∈ ℝ9 and 𝑦𝑖 ∈ ℝ.
• So, the output layer should have one unit.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…

For a classification 
problem with 10 classes, 
how many outputs should 
the network have?
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Neural Network (Graphical Depiction)

𝑥𝑖 𝑓𝑤 𝑥𝑖

• If the output of the parametric model should not be “squashed” to 
[0,1], the squashing function (activation function) can be omitted 
from the output layer.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 

Layer

Output 
Layer

…
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Activation Function: Sigmoid

• Sigmoid functions are a class of S-shaped functions.
• The most common one is called the logistic function.

• It is so common that it is often called “the” sigmoid function.

• 𝜎 𝑧 =
1

1+𝑒−𝑧
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Activation Function: Hyperbolic Tangent 
Function (tanh)
• tanh 𝑧 =

𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
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Activation Function: Rectified Linear Unit 
(ReLU)
• ReLU 𝑧 = max(0, 𝑧)
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Activation Function: Leaky ReLU

• Leaky ReLU 𝑧 = ቊ
𝑧 if 𝑧 > 0
𝛼𝑧 if 𝑧 ≤ 0 

• Here 𝛼 is a small constant, typically 0.01.
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Fully-Connected Feed-Forward Networks

• A fully-connected feed-forward ANN is one where each unit in the 
𝑖th layer:
• Takes the output of each unit in the (𝑖 − 1)th layer as input.
• Provides its output to each unit in the (𝑖 + 1)th layer.

𝑥𝑖 𝑓𝑤 𝑥𝑖

Input 
Layer

First 
Hidden 

Layer

Second 
Hidden 

Layer

Output 
Layer

…

73



Recurrent Neural Network (RNN)

• Recurrent neural networks can have backwards connections 
between layers.

• These networks are typically run several times on the same input, 
and recurrent (backwards) edges provide values from the previous 
runs.
• Recurrent connections provide a form of “memory”

𝑥𝑖 𝑓𝑤 𝑥𝑖
…
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Skip Connections

• Skip connections are connections that skip over one or more 
layers.

𝑥𝑖 𝑓𝑤 𝑥𝑖
…
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What do different layers learn?

• Consider parametric models that take images as input.
• The layers closer to the input tend to learn low-level visual 

features.
• Later layers use these low-level features to learn about higher-

level features and concepts.

𝑥𝑖 𝑓𝑤 𝑥𝑖
… …

Fires if there is an edge passing through position 
(372, 981) in the image, at an angle of 43 degrees.

Fires if there is a cow in the image Fires if there is a cow jumping over the moon
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Learning Low-Level Features

• An ANN might use early layers to detect low-level features of an image
• One unit early in the network might “fire” when there is an edge at position (x,y) 

in the image, and the edge  is vertical.
• Another unit might fire when there is an edge at position (x,y) at an angle of 80 

degrees (nearly vertical).
• There may be different units for all of these features at each (x,y) coordinate in 

the image!

• Learning to separately detect the same feature at each location in the 
image is wasteful.

• Idea: Create a parametric model (layer for ANNs) that learns to find and 
represent features anywhere in the image.
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Convolutional Layer

• If an image is of size imgwidth × imgheight, create a parametric model, 
called a filter, that takes as input a small subregion of the image, called 
a patch.

imgheight

imgwidth

patchwidth

patchheight• This filter (small 
parametric model) is run 
on each patch in the 
image.
• The patches can overlap.
• Each patch is a fixed 

number of pixels over 
from the previous patch. 
This number is called the 
stride.
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One number, 
the “feature” 
value for this 
patch.

0.2
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One number, 
the “feature” 
value for this 
patch.

0.2
0.17
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One number, 
the “feature” 
value for this 
patch.

0.2
0.17

0.8
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

0.2
0.17

0.8
−2.1
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3

−0.64
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, … )

0.2
0.17

0.8
−2.1

1.3

−0.64
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One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8, −2.1, … , 1.3, −0.64, … )

These values are usually 
represented as a matrix to track the 
position of the patch they were 
computed from.

0.2 0.17 0.8 −2.1 1.3

−0.64 …
…
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Convolutional Layer (Graphical Depiction)

…

This represents a convolutional layer (blue) applied to an image.

A wider rectangle to 
denote that this is a matrix 
of numbers, not a vector.
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Convolutional Layer

• A convolutional layer with multiple filters is represented using 
many stacked boxes:

…
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Convolutional Layer

• Convolutional layers can be applied in a sequence!

…
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Max Pooling Layers

• When using convolutional layers with many filters, you can end up with 
more outputs from the convolutional layer than there were pixels in the 
original image!

• To make the number of values more manageable, a max pooling layer 
can be used to downsample (reduce) the number of features.

• A max pooling layer acts like a convolutional layer, but without any 
parameters.
• For each patch, it returns the maximum value within the patch.
• Other pooling layers (e.g., average pooling layers) compute other fixed functions 

of a patch (e.g., the average value in the patch)
• A max pooling layer typically has a relatively wide stride and/or patch.

• For example, a 2x2 patch with no overlap between patches quarters the number of 
values. 90



Flattening Layers

• Convolutional layers output values in a matrix.
• One matrix per filter

• Typical feed-forward layers expect values as a vector.
• Flattening layers convert the output of convolutional layers into 

one long vector (rather than a set of matrices).
• Flattening layers have no tunable parameters, 𝑤.
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Example from Online:
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

• Number of channels = number of filters
• Some concepts beyond the scope of this class (e.g., padding)
• This model has 10 outputs, one per digit (more on this when 

we discuss classification)

Why 10 outputs?
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Example from Online:
https://developersbreach.com/convolution-neural-network-deep-learning/

What is “softmax” doing here? 93



Example from Online:
https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

Note the softmax again!
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Example from Online:
https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 × 3 
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use 
max pooling in this work with a filter size of 2 × 2, no padding and stride 2 which results in a 
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters 
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs 
logits over the number of classes.

This refers to 
the size of 
each patch
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Example from Online: 
https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d
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Our old approach (manual derivation) is error prone 
and can be specific to a network architecture
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Chain Rule (Review)

𝑑𝑓 𝑔 𝑥

𝑑𝑥
=

𝑑𝑓 𝑥

𝑑𝑔 𝑥

𝑑𝑔 𝑥

𝑑𝑥

or

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
 – How does changing 𝑥 change 𝑧?

𝑑𝑦

𝑑𝑥
 – How does changing 𝑥 change 𝑦?

𝑑𝑧

𝑑𝑦
 – How does changing y change 𝑧?

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

=2 (adding 𝜖 to 𝑥 increases 𝑦 by 2𝜖)

2

=3 (adding 𝜖 to 𝑦 increases 𝑧 by 3𝜖)

3

=6 (adding 𝜖 to 𝑥 increases 𝑧 by 6𝜖)

6
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Chain Rule

𝑥

𝑦

𝑧

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥
+

𝑑𝑧

𝑑𝑦′

𝑑𝑦′

𝑑𝑥

𝑦′

2
3

𝟐 × 𝟑 + 𝟏 × 𝟓 = 𝟏𝟏

1 5
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Expression Trees

• Math expressions like function definitions can be converted into 
expression trees.
• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓 𝑥 = 3𝑥2 + 2𝑥

𝑥

⋅2

×

23

+

×

𝑓(𝑥)
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We write 𝑥′ and 𝑥′′ so that we can talk about the two paths, 𝑑𝑓 𝑥

𝑑𝑥′  and 𝑑𝑓 𝑥

𝑑𝑥′′  

Automatic Differentiation

• Goal: Compute 𝑑𝑓(𝑥)

𝑑𝑥
, for some value of 

𝑥
• Example: 𝑥 = 5

• Step 1: Run a “forwards pass”
• Evaluate the expression tree, computing 

values from the bottom to the top.
• Step 2: Run a “backwards pass”

• Loop over nodes from the top to the 
bottom.

• For each node, compute the derivative of 
𝑓(𝑥) with respect to each input of the node.

𝑥

⋅2

×

23

+

×

𝑓(𝑥)

5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

𝑑𝑓 𝑥

𝑑𝑐

𝑑𝑓 𝑥

𝑑𝑎

𝑑𝑓 𝑥

𝑑𝑏

𝑥′

𝑥′′
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) with respect to (w.r.t.) the output out 

of the multiplication function, ×.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
=

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out
in1

×

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in2

𝑑𝑓 𝑥

𝑑out
in1
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Backwards Pass: Addition Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in1 and 𝜕𝑓(𝑥)/𝜕in2

• Assume that we know:
• The value of the inputs: in1 and in2

• These were computed during the forwards pass
• The derivative of 𝑓(𝑥) w.r.t. the output out of the addition 

function, +.
• This is 𝑑𝑓 𝑥

𝑑out
• This was computed earlier in the backwards pass by the node 

“above” the multiplication node.

•
𝑑𝑓 𝑥

𝑑in1
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1

•
𝑑𝑓 𝑥

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in2
=

𝑑𝑓 𝑥

𝑑out

+

in1 in2

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in1
= 1=

𝑑𝑓 𝑥

𝑑out
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Backwards Pass: Exponent Node

• We want to compute 𝜕𝑓(𝑥)/𝜕in.
• Assume 𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
•  The derivative of 𝑓(𝑥) w.r.t. the output out of the 

exponentiation function, ⋅ 𝑧.
• This is 𝑑𝑓 𝑥

𝑑out
, as was computed previously in the backwards pass

•
𝑑𝑓 𝑥

𝑑in
=

𝑑𝑓 𝑥

𝑑out

𝑑out

𝑑in

⋅𝑧

in

𝑓(𝑥)

𝑥

out

𝑑𝑓 𝑥

𝑑out

z𝑑𝑓 𝑥

𝑑out
in𝑧−1

=
𝑑𝑓 𝑥

𝑑out
× 𝑧 × in𝑧−1 

106



𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= ?

𝑥′

𝑥′′
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= ?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
=?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= ?
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𝑥

⋅2

×

23

+

×

𝑓(𝑥)

𝑥 = 5

𝑎 = 10

𝑏 = 25

𝑐 = 75

𝑑 = 85

Forwards Pass
Backwards Pass

Compute d𝑓

d𝑥
 for 𝑓 𝑥 = 3𝑥2 + 2𝑥 at 𝑥 = 5

𝑑𝑓 𝑥

𝑑𝑐
= 1

𝑑𝑓 𝑥

𝑑𝑎
= 1

𝑑𝑓 𝑥

𝑑𝑏
= 3

𝑥′

𝑥′′

𝑑𝑓 𝑥

𝑑𝑥′
= 3 × 2 × 5 = 30 

𝑑𝑓 𝑥

𝑑𝑥′′
= 2

𝑑𝑓 𝑥

𝑑𝑥
= 30 + 2 = 32
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Automatic Differentiation

• Automatic differentiation tools take functions as input
• Typically these functions are implemented as code, e.g., python functions.

• They can then be used to take the derivative of the function with respect to 
the arguments (inputs).

• There are several methods for automatic differentiation, with different pros 
and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards 

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
•  This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to 
calculate expressions for the derivative) and finite difference methods (beyond the 
scope of this course).
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Autograd
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Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more 

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.
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Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters 
(and their gradients), moving parameters to the GPU, saving and loading 
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number 

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥.

• You do not need to implement any gradients or the backwards 
pass!
• PyTorch uses reverse mode automatic differentiation to automatically 

compute gradients.
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Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare 
runtimes later, and to show a phenomenon called “overfitting”.
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Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient 

descent (SGD), and Adam (SGD with a specific adaptive step size 
method).
• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use.
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Runtime
• My work desktop has an Intel i9-9900k with 16 cores (CPU). 
• It also has an RTX 2070 GPU

• This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special 
“Tensor” cores)

• These GPU cores are limited in comparison to CPU cores.
• No branch prediction
• Limited cache
• Shorter pipeline (typically)

• Slower clock (1.605 GHz vs 5 MHz)
• Not designed for parallel processing (many processes running at once)

• Designed to perform many simple operations like dot products 
efficiently and in parallel
• These operations are useful for displaying graphics (e.g., applying simple 

functions to each pixel on the screen between every frame, changing things like 
lighting)

• They are also useful for ML! Running an ANN means computing a lot of dot 
products (and some non-linearities).

122



Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the 
model/weights to a file). Leave on the GPU if you will only run it on the GPU.
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Overfitting

• Recall that the training error for nearest neighbor (NN) was zero, 
but the testing error was large.
• NN essentially “memorized” the training data, and gave good predictions 

for the training data.
• The model did not generalize to new inputs: it had high errors for points 

not in the training data.

• When this happens using parametric models, it is called 
overfitting.
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Plotting Training vs Testing Loss (General Case)

Testing loss

Training loss

Iteration or Epochs

Overfitting begins

Loss

Idea: Stop training when the 
testing loss starts increasing.
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Overfitting and Model Complexity/Capacity

• Notice that we can’t overfit this 
data using a line!

• The model complexity or model 
capacity refers to a parametric 
model’s ability to represent 
general functions.
• Models with higher 

complexity/capacity can represent 
more functions.

• Models with higher 
complexity/capacity are more prone 
to over-fitting.
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Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases. 
• Typically split data into training, validation, and testing
• Stop training when the error on the validation set begins to increase
• This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
• Complete details are beyond the scope of this course.
• Regularization terms increase the loss the farther the weight vector is 

from zero: 𝐿new 𝑤, 𝐷 = 𝐿 𝑤, 𝐷 + 𝜆‖𝑤‖

• Often using the L1 norm, 𝑤 = σ𝑗 𝑤𝑗  or the L2 norm 𝑤 = σ𝑗 𝑤𝑗
2.

3. Other strategies (e.g., dropout)
4. Use a large network! ⋅  denotes a norm (a 

notion of “length”)
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“Use a large network”: Double Descent

• Large networks seem like they should be particularly prone to 
overfitting.

• When trained sufficiently on large amounts of data, empirical 
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called 
double descent, is an 
active research topic!
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Regression → Classification

• Two changes for parametric methods:
1. Change the parametric model so that it outputs a discrete label as a 

prediction rather than a number
2. Select a loss function that is appropriate for classification tasks

• Note: Techniques differ for non-parametric methods
• E.g., we discussed nearest neighbor (and variants) for classification
• E.g., there are other custom non-parametric methods for classification 

like decision trees, which are beyond the scope of this course.

• Terminology: Each possible value of the label is called a class
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Parametric models for classification

• Assume 𝑚 classes (possible values of the label)
• Change parametric model to have 𝑚 outputs rather than one.
• Deterministic:

• Class with the highest output is the predicted class.
• Simple and effective
• Gradient of the loss function is typically zero, making this impractical for 

training.

• Stochastic:
• The 𝑚 outputs are converted to a probability distribution over the classes, and 

the label is sampled from this distribution.
• The larger the output, the higher the probability of the class being selected
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Stochastic Models: Softmax

• The softmax function converts the 𝑚 outputs to a distribution 
over the 𝑚 class values.

• Let out1, … , out𝑚 be the model outputs.
• Probabilities cannot be negative, so convert each output to a 

positive value:
out1, … , out𝑚  → eout1 , … , 𝑒out𝑚  

• A probability distribution must sum to one, so divide each by the 
sum:
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Binary Classification

• Special case where 𝑌𝑖 ∈ 0,1  or 𝑌𝑖 ∈ −1,1
• Typically 1 is called the “positive class”

• Parametric models need only have one output, not 𝑚 = 2
• This output encodes the probability of the positive class.
• The probability of the negative class is 1 − Pr positive class .

• The output of the model must be scaled to [0,1].
• This can be done using the logistic function (sigmoid):
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Loss Functions for Classification

• There are many loss functions for classification.
• You can make your own that is tailored to your problem!

• Cross-Entropy Loss (log loss) is the most common.

• The 1
𝑛

 is sometimes omitted (it makes no difference).
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Binary Cross-Entropy Loss

• What if 𝑌𝑖 ∈ [0,1], not 𝑌𝑖 ∈ {0,1}?

Cross−Entropy Loss 𝑤, 𝐷 = −
1

𝑛
෍

𝑖=1

𝑛

𝑌𝑖 ln Pr ෠𝑌𝑖 = 1 + 1 − 𝑌𝑖 ln Pr ෠𝑌𝑖 = 0

• Question: When 𝑌𝑖 ∈ {0,1} is this equivalent to the first expression?
• Answer: Yes!
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Logistic Regression

• Logistic regression uses the logistic model or logit model
• Essentially a linear parametric model for classification

• Use cross-entropy loss
• Equivalent to maximizing the “likelihood” of the data given the model.

𝜎 𝑤 ⋅ 𝜙 𝑋𝑖
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Stochastic → Deterministic Models

• During training often models are viewed as stochastic (minimizing 
cross-entropy loss).

• If the model is highly confident of the class for an input, the output 
for that class will be come large
• No matter how large it is, the resulting probability of the label will not be 1

• To enable models to make deterministic predictions, often models 
are evaluated (and then deployed to make predictions for new 
data) as deterministic models, even if they are trained as 
stochastic models.
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We saw another example of over-fitting, and 
used early stopping to prevent it:
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Evaluation Metric: Accuracy

• While relatively simple, 
accuracy can be 
misleading if the class 
distribution is imbalanced.

• In this case, 96% accuracy is 
decent! 138



Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors 
are common
• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with 
one row per class and one column per class
• The 𝑖, 𝑗 th entry holds the probability that a row with actual class 𝑖 is 

classified as class 𝑗.
• In some cases the matrix reports the number of errors of each type, rather 

than the estimated probability.
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Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors 
are common
• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with 
one row per class and one column per class
• The 𝑖, 𝑗 th entry holds the probability that a row with actual class 𝑖 is 

classified as class 𝑗.
• In some cases the matrix reports the number of errors of each type, rather 

than the estimated probability.
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Evaluation Metric: Precision, Recall, and F1 Score

• For binary classification tasks, statistics like precision, recall, 
and the F1 score are often used to evaluate models.
• Note: These are often used even when the loss function used in training 

measures something else, like cross-entropy loss.

• These metrics are expressed in terms of the following statistics:
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Deterministic Classifiers

Stochastic Classifiers
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F1 Score

• The F1 score (often written “F1 score”) combines precision and 
recall:

• This is the harmonic mean of the precision and recall
• Places more weight on low values relative to the arithmetic mean

• F1 score ranges from 0 to 1, where 1 denotes perfect precision 
and recall, and 0 means that either precision or recall is zero.
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Example ROC Curve

• Curves closer to the top left 
corner correspond to better 
models.

• A classifier that ignores the 
inputs and outputs a uniform 
random number in [0,1] 
results in a diagonal line from 
(0,0) to (1,1)
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Evaluation Metric: Area Under the ROC Curve 
(AUC)
• The AUC summarizes the ROC curve with a single number: The 

area under the ROC curve.
• The best possible value is 1.
• A pessimal model (one that always gets the prediction wrong) 

would have an AUC of zero.
• The random classifier achieves an AUC of 0.5
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Generative AI

• Generative AI methods create new content like text, images, 
music, or other data, often mimicking some aspects of human 
creativity.

• Generative AI is often (not always!) a form of unsupervised 
learning (learning from data with no labels).
• When presented with a data set 𝐷 = 𝑋𝑖 𝑖=1

𝑛 , the agent’s goal is to create 
new  data points that are indistinguishable from the data in 𝐷.

• Two core methods in generative AI are variational autoencoders 
(VAEs) and generative adversarial networks (GANs).
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Variational Autoencoders (VAEs)
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Generative Adversarial Networks (GANs)

Input (noise vector) Generator Fake Data

Fake Data, Label=0
Real Data, Label=1 Discriminator

Input (noise vector) Generator Fake Data

Input (noise vector) Generator Fake Data

Predictions

Classification Loss
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Conditioning on Text

• VAEs and GANs can be conditioned on text.
• In a VAE, the text is first converted into its own embedding (numerical 

vector representation)
• The text (represented as a vector of numbers) is then appended to the 

input to the decoder.
• The encoder does not see the text – it just learns a representation for the image.
• The decoder is given the latent representation of the image and the text 

description.

• To be effective, the distribution of the latent representation conditioned 
on the text must still be normally distributed.
• Otherwise, when generating a new image, the latent representation of the image 

that is sampled may not be compatible with the provided text query.
• Mechanisms for ensuring this are beyond the scope of this course.
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Conditioning on Text

• To condition a GAN on text, the generator receives both the noise 
and text embedding as input.
• Its goal is to generate an image that corresponds to the text embedding 

that is indistinguishable from images and their corresponding text 
embeddings in the training data.

• The discriminator also takes the text embedding into account.
• Its goal is to determine whether the image provided for the text 

embedding corresponds to an image from the real data set or the fake 
data set.

• Note: Both training VAEs and GANs that can be conditioned on 
text requires training data containing both images and 
corresponding text descriptions!
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Large Language Models (LLMs)

• Large parametric models applied to text (or audio) generation.
• Input: A sequence of words, split into tokens

• A token is a sequence of letters/punctuation
• Often a token is a word or a part of a word

• Output: The next token
• Training: This is a standard classification problem!

• Generate input-output pairs from human-written text
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Foundation Models

• Modern parametric ML models are expensive to train
• Instead of everyone training new models, large models can be 

trained once and shared.
• These are called foundation models.
• Examples: GPT (OpenAI), BERT (Google), Llama (Meta), and many 

others.
• Some can be found at https://huggingface.co/
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Finetuning Models

• When using foundation models, often there is a need to change 
the model in some way.
• Provide it with additional training data on a specific topic
• Change the tone of its responses
• Change it so that responses are more conversational
• Change it so that it excels at summarizing reviews
• …

• When a foundation model is further trained (often using a different 
data set and loss function!), it is called fine-tuning.
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Finetuning Models Efficiently

• Even finetuning a large model can be infeasible without significant 
hardware and funding.

• One area of research involves finding more efficient ways to 
finetune models.

• Example: Low Rank Adaptation (LoRA)
• Focusses on changing weights in a section of the network (attention and 

feed-forward parts of a transformer).
• Uses low-rank matrices to represent the change to the weights.

• This is a way of using a small number of weights to tune a larger number of weights
• If there are 𝑚 × 𝑛 weights 𝑊, we tune two matrices 𝐴 and 𝐵 of sizes 𝑚 × 𝑘 and 𝑘 ×

𝑛, where 𝑘 is relatively small. The change to weights 𝑊 is then 𝐴𝐵.

154



Executing Models Efficiently

• Running (not just training!) large parametric models can also be 
expensive.

• Another area of research focusses on making the execution of 
large models more efficient

• Examples:
• Model pruning: Finding unimportant weights and parameters that can be 

removed.
• Quantization: Reducing weights from 32 bits to 8 bits.
• Knowledge Distillation: Train a smaller model to mimic the outputs of a 

larger pre-trained model.
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End
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