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What is machine learning (ML)?

* Subfield of artificial intelligence (Al)
“Al is a field concerned with intelligent behavior in a%%ﬁgggss.”
— Nilsson 1998

Like math, physics or theology ‘

* Alis not a thing/object.

* The thing/object using Al methods is called an agent.
* Agent: Something that acts, from Latin agere, which means “to do.”
* E.g., arobot or software program



ML is a subfield of Al

Al Al

1950s - 1980s 2000s — present

* ML is a subfield of Al “concerned with the question of how to
construct eemputer programs that automatically improve with
experience.” [Tom Mitchell, 1997]

* Improve = learn
* Experience = data
* Computer =unnecessary



Data & Supervised Learning

e Different subfields of ML assume access to different kinds of data.

* During the first part of the course, we will focus on supervised
learning problems.

* These are problems where the data is a set of points, and so itis
called a data set or dataset.

* Each point consists of a pair of inputs and outputs.

* Given a data set of such input-output pairs, a supervised learning
algorithm learns to predict the output given the input, even for
points not in the data set.



Data Set Notation

 X: Input (also called features, attributes, covariates, or
predictors)
* Typically, X is a vector, array, or list of numbers or strings.

* Y: Output (also called labels or targets)
* Typically, Y is a single number or string.

* An input-output pairis (X,Y).

* Let n, called the data set size or size of the data set, be the
number of input-output pairs in the data set.

« Let (X;,Y;) denote the i*! input output pair.

* The complete data setis
(Xi) Yi)?:]_ — ((Xl) Y]_)) (Xz, YZ); ALl (Xn) Yn))



Feature Types

* Numerical

* Continuous: Features that can take any value in a range, like temperature or
velocity.

* Discrete: Features that take a countable number of distinct values, like the
number of cats a person owns. (Binary features are a special case.)

* Categorical (discrete, but not numbers)

* Nominal: Unordered categories like colors (red, green, blue) or genre (drama,
comedy, science fiction, etc.).

* Ordinal: Categories with a specific order like educational level (high school,
bachelor’s, master’s) or military rank (private, specialist, corporal, etc.)

* Text/String
* Image
* Other



Feature Types

e Non-numerical features are often converted into numerical
features to make them easier to work with.

» Categorical features map to integers: “Sunday”—20, “Monday”>1,
“Tuesday”—2>2, etc.

* Images can be converted to sequences of (r,g,b) values describing each
pixel.

e Text can be converted to discrete or continuous features

* Discrete: Each word (or part of a word) maps to a unique integer.
* Each basic unit of text (word, character, or subword) is called a token.

* Continuous: Each word can be mapped to a vector of real numbers. This is called a
word embedding. Ideally, similar words are mapped to similar vectors of numbers.
Word embeddings are themselves learned from data.



Regression and Classification

* Within supervised learning, recall that a data set is a set of input-
output pairs (X, Y).
* Regression: Y is a continuous number.
* Multivariate Regression: Y is avector. Thatis,Y € R™andm > 1.

* Classification: Y is categorical (mapped to an integer).
* Binary Classification: Y € {0,1} orY € {—1,1}.
* Multi-Class Classification: Y € {0,1, ..., k}.



Nearest Neighbor

* A particularly simple yet effective ML algorithm based on the core idea:

When presented with a query, find the data point (row) that is
most similar to the query and give the label associated with

this most-similar point as the prediction.

* We can map this to fit/predict functions:

e £it:Storethe data

* predict: Foreach query row do the following
* Loop over each row in the training data, computing the Euclidean distance between the
query and the row.
* Create an array holding the labels from the rows with the smallest distance to the query
feature vector (often just one element).

* Return an arbitrary (e.g., random) element of the array.



Evaluation Metrics (Regression)

1 "
* Mean Error: =1, y; — Vi

* Rarely What you want.
* Allows positive and negative errors to cancel each other out.

 Mean Squared Error (MSE): =™ ., (y; — 9;)*

* Very common choice.

* Gives a higher weight to larger errors, making it sensitive to outliers. It’s
useful when large errors are particularly undesirable.

* Root Mean Squared Error (RMSE): VMSE

 Has the same units as the target variable (unlike MSE).
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Evaluation Metrics (Regression, cont.)

* Mean Absolute Error (MAE):% iy — il

* Like MSE, but with less emphasis on outliers.

i=1(Vi=91)° _ 1
* R-squared (R?): 1 — ’-1_11(yi—37)2 ,wherey = -3, y; .

* Also called the coefficient of determination.

* Indicates the proportion of the variance of the dependent variable (labels)
that is predictable from the independent variables (predictions).

* Largeris better (maximum possible is one).
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k-Nearest Neighbors (k-NN)

Idea: Average the labels of the k nearest points

Pseudocode:

* Find the k nearest neighbors to the query point.

 Calledthe “nearest neighbors”
If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

» Setthe prediction to be the average label of these k nearest neighbors.

e Code:

class KNearestNeighbors(BaseEstimator):
# Add a constructor that stores the value of k (a hyperparameter)
def init (self, k=3): Hyperparameter,
self.k = k default value k = 3

12



Weighted k-Nearest Neighbor

* Let (xlNN,leN) be the i*M nearest neighbor

* Let w; be the weight associated with this point
* We consider only non-negative weights: w; = 0.
* We describe how w; can be computed on future slides.

* Weighted k-NN predicts the label: Why do we divide by the sum of the
k NN weights?

~ _ Li=1 Wili » So that the weights sum to one.

o k W * This keeps the prediction at the same
J=1""] “scale” as the labels.
* Thisis equivalent to:  Example:Ifk =2,w; =landw, =1,
k W: and the division by the sum of weights
y = Zk—lyl!\”v is dropped.
i D=1 Wi « The prediction is 2 X 00 big!

* Dividing by the sum of the weights
makes this a weighted average.



Gaussian Kernel

* The re-scaled probability density function (PDF) of a normal distribution.
* PDF of a normal distribution

£ =
xX) = e 20
oV2m
e Meanu=20
* Standard deviation o (a hyperparameter)
.. . 1 : :
* Normalizing the weights makes the constant = cancel out in each weight.
Hence:
xz 1.0 4
w; = e 202

* Weuse x = dist(x{v N xquery) giving: o
. NN 0.4
Wi u— e 20-2 0.2 7

0.0 A

0.0 0.5 1.0 15 2.0 2.5 3.0



Tuning Hyperparameters

* How should we set k and ¢?
* |[dea: Enumerate a “grid” of possible values.

# Define the ranges for k and sigma
k values = [k for k in range(100, 1100, 100) ]
sigma values = [20, 50, 75, 100, 200, 400, 600]

* Try all possible combinations of valuesof k in k values ando
In sigma values.

* If plotted as points where the horizontal axis is k and the vertical is o (or
vice versa), the points would form a grid.

* Hence, called “Grid Search”
e Select the values that result in the best evaluation

15



Tuning Hyperparameters

* Grid search is common due to its simplicity.

* Research suggests that randomized searches may be more
principled.
* Randomly sample each hyperparameter from some distribution
* Typically run for some fixed number of hyperparameter settings

16



Train/Validation/Test Sets

* Validation sets are often used to automatically tune
hyperparameters.

* The data is split into three sets: train, evaluation, and test. The
following procedure is then used:
* For each hyperparameter setting:

* Train a model using the training data.
* Evaluate the model using the validation data.

* Select the hyperparameter settings that achieve the best evaluation on
the validation set.

* Train a model using all the training and validation data and the
hyperparameters that achieved the best evaluation.

* Evaluate the model using the testing set.

17



Classification with NN-Variants

* NN: No changes needed!

* K-NN: The predicted label comes from a majority vote of the k
nearest neighbors.

* Weighted k-NN: Each neighbor’s vote is weighted in the vote.
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Mean Squared Error (revisited)

* The MSE is: ,
MSE = E|(¥ - 7,)°].
* Thisis a parameter or population statistic.

* The sample MSE is:

n

n

_ 1 N2 1

MSE, =) (%=1)" or = (i —y)?.
=1

=1
* This is a statistic or sample statistic.

* The “hat” means “an estimate” and the n-subscript indicates it is computed
from n samples.

* Our goalis typically to optimize a parameter.
 We don’t know this parameter’s value.

* [n an attempt to achieve this goal, we use sample statistics.
* We can compute sample statistics from data!
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Confidence Interval

* We will use the number of samples and their variance to construct a
confidence interval for the parameter (e.g., MSE) based on the sample
statistic (sample MSE).

* A confidence interval is an interval (range of numbers) that contains a
parameter with a specified confidence, 1 — 6.

* If[L,U]isal — 6 confidence interval for the mean u, then
Pr(L<u<U)>=1-6.

* Question: What is random in this statement of probability?

* Answer: The confidence intervalis random! It is typically computed
from data. Different samples of data result in different lower and upper
bounds.

20



Standard Error

* One common way to obtain a confidence interval is using standard error.
* Let x¢, x5, ..., X, be a sequence of n numbers.

* Let 0 be the sample standard deviation of this sequence (with Bessel’s
correction):

o = )
n—1

n

=

P

=

1
n

[y

e The standard error is then

SE = —
==



Using Standard Error

e If X4, X5, ..., X,; are n random variables and:
* The random variables are i.i.d. with mean u.
* The random variables are each normally distributed.

« X = %Z?lei is the sample mean.
e Then [X — 1.96 X SE, X + 1.96 x SE] is a 95% confidence interval
for u.

e Thatis: - -
Pr(X —196 XxSE<u<X+1.96 x SE) = 0.95.
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Mean Squared Error (re-revisited)

+ MSE: MSE = E|(¥ — 7;)°].
« Sample MSE: MSE,, = = Y7, (V; — 171)2 .

n
cLetZ; = (Y, - 7;)°.
* Notice that u = E|[Z;] = MSE, and let SE be the standard error of
21,2y e L.
* So, MSE,, + 1.96 X SE is a 95% confidence interval for the actual

MSE (under normality assumptions).

* Although normality assumptions often false, this gives a rough idea of
how much the sample MSE can be trusted.
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Model
0 k-NN k=1 sigma=None
1 k-NN k=100 sigma=None
2 k-NN k=110 sigma=90

Model
0 k-NN k=1 sigma=None
T k-NN k=100 sigma=None
2 k-NN k=110 sigma=90

MSE

1.066188 1.032564
0.556796  0.746187
0.555601 0.745386

RMSE MAE RA2

+1.96 X SE

MSE

1.104 £ 0.075
0.565 + 0.041
0.565 + 0.041

RMSE

1.051 £ 0.029

0.752 + 0.020
0.752 £ 0.020

0.793455 -0.635682
0.587380  0.145797
0.586671 0.147631

MAE

0.803 £+ 0.029
0.586 + 0.020
0.586 + 0.020

We can be somewhat confident that the model learned by NN is worse than the
model learned by k-NN (k = 100) and weighted k-NN (k = 110,0 = 90).

We cannot be confidence about k-NN vs weighted k-NN.

Note: Always check for the meaning of the + value! Standard error, standard
deviation, and confidence intervals all have very different meanings!

24



Model Evaluation (Review)

* Often ML texts evaluate models by doing the following:
* Partition the data into train/test.
* Train the model on the training data.
* Evaluate the model on the testing data.

* Report a performance metric and a number representing the uncertainty
in this performance metric.

* Format: performance tuncertainty

Model MSE RMSE MAE
0 k-NN k=1 sigma=None  1.104 + 0.075 1.051 £ 0.029 0.803 + 0.029
T k-NN k=100 sigma=None 0.565 + 0.041 0.752 + 0.020 0.586 + 0.020
2 k-NN k=110 sigma=90 0.565 + 0.041 0.752 £+ 0.020 0.586 + 0.020
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Algorithm Evaluation (ldeal)

In practice, we can’tdo
Specify a number of trials, num_trials this step!
Foreach trial 2 in 1, ..., num_ trials do: /
o Sample a data set (ideally independent of the data sets for other trials)
o Split the data set into training and testing sets

o Use the ML algorithm to train a model on the training set.
o Use the trained model to make predictions for the testing set.

o Compute the sample performance metric (e.g., sample MSE) for the test set. Call this Z;.

Compute and report the average sample MSE.
Compute and report the standard error of Z1, ..., Znum trials-

26



Cross-Validation

* ldea: Repeatedly define different parts of the data set to be training and
testing data.
* Different training sets result in different models.
* The testing set for each model will always be independent of the data used to
train the model.
* To do this, we will split the data D into k equally-sized subsets.
* Each of these subsets is called a fold.
* This k is not related to the k in nearest neighbor.

* We will train on all but one fold and test on the held-out fold.
* These individual evaluations on test sets containing one fold have high variance!

* We can average these high-variance evaluations to obtain a better estimate of
performance.

27



Entire Data Set

|

k folds

28



Entire Data Set

Test Train
\ \
( \ [ | Performance
Prediction

_,p1

\ J

|
k folds

_,p2
_,p3

29
Repeat for Py, ..., P, Performance Estimate = mean(Py, ..., Py) Uncertainty quantification = SE(P;, ..., Py)



K-Fold Cross-Validation Pseudocode

¢ Input: Dataset D, Number of folds k, Machine Learning Algorithm ML_Algo
e Output: Cross-validated performance estimate

Procedure:

1. Split D into k equal-sized subsets (folds) F1, F2,
2.For i from 1 to k:

o Set aside fold Fi as the validation set, and combine the remaining k-1 folds to form a training
set.

o Train the model M using ML_Algo on the k-1 training folds.

o Evaluate the performance of model M on the validation fold Fi. Store the performance metric
P i.

.., Fk.

3. Calculate the average of the performance metrics: Average_Performance = mean(P_1, P_2,
P k).
4. Optionally, calculate other statistics (like standard deviation or standard error) of the performance

metrics across the folds. 30



Leave-One-Out (LOO) Cross-Validation

* The number of folds equals the number of points in the data set.
* Each test set contains only a single point!

* Provides the best estimates of performance.

* Often too computationally intensive to perform.

31



Linear Regression

 Search for the line that is a best fit to the data.
* Different performance measures correspond to different ways of
measuring the quality of a fit.

* Sample mean squared error, or the sum of the squared errors is
particularly common:

VId R N A\ 2 . N A\ 2
* Although not identical, the line that minimizes one also minimizes the
other.

* Using sample MSE, this method is called “least squares linear
regression.”

32



Linear Regression: What is a line?

=mx + b

CNTN

Predlctlon y;  Slope,m Input,x; vy-intercept,b

— =

“weights,” or “parameters”, w = (wy,w,)

"\

Yy = wix; + w,

33



Models (Review)

* Amodelis a mechanism that maps input data to predictions.

* ML algorithms take data sets as input and produce models as

Bowom s O

43298
43299
43300
43301
43302

output.

physics biology history English

62260 49136
538.00  490.38
45518 440,00
756.91 679.62
58454 64984

519.55  622.20
81639 85195
79875  817.38
527.66  443.82
51256 41541

439.93
400.59
570.86
531.28
637.43

6560.90
732.39
731.98
545.88
517.36

707.64
529.05
417.54
583.63

609.08

543.48
621.63
648.42
624.18
532.37

Data Set

663.65
53228
453.53
53442
670.46

643.05
810.68
751.30
420.25
592.30

geography literature

557.09
447.23
425.87
521.40
51538

579.90
666.79
648.67
676.80
382.20

Portu,

71137 73131
527.58 379.14
47563 476.11
59241 783.76
572.52 58125

584.80 581.25
70522 781.01
66205 773.15
58341 39546
538.35 448.02

guese math chemistry gpa

509.80 1.33333
488.64 2.98333
407.15  1.97333
588.26 2.53333
529.04 1.58667

57392 276333
831.76 3.81667
83525 3.75000
509.80 2.50000
496.39 3.16667

A query can be one or more feature vectors.

- - -
— -
Query «
798.75 817.58 731956 64842 751.30 648.67 66205 773.15 835.25
527.66 44382 545858 624.18 420.25 676.80 58341 39546 509.80

'—] ML Algorithm

Predictions are given for

375000 4. = -~ each feature vector in the

2.50000 query.

Prediction 34



Parametric Model

* Amodel “parameterized” by a weight vector w.
* Different settings of w result in different predictions.

* Lety = fi(x)
e 1-dimensional linear case:
fw(x) = wix +w,

* d-dimensional linear case:
fw(Xi) = wixi + Woxio + o+ WeXig

e We can write this as: ;
fw(x;) = 2 Wj Xy .
j=1

* This is called a dot product and can be written as w - x; or w’x;.

35



Linear Regression: Optimization Perspective

* Given a parametric model f,, of any form how can we find the weights w that
result in the “best fit”?

e Let L be afunction called a loss function.
* |ttakes as input a model (or model weights w)

e |talsotakes asinputdata D
* |t produces as output a real-number describing how bad of a fit the model is to the
provided data.

* The evaluation metrics we have discussed can be viewed as loss functions.
For example, the sample M%E loss function Is;

w. D) = 1 o 1 2
(w,D) = Ez(yi — )T = Ez(yi B fw(xl)) For the sample MSE loss
i=1 =1 \ function, this can be any

* We phrase this as an optimization problem: parametric model, not
argmin,, L(w, D) just a linear one!

36



Linear Regression: Optimization Perspective

argmin,, L(w, D)

* Recall: argmin returns the w that achieves the minimum value of
L(w, D), not the minimum value of L(w, D) itself.

* This expression describes a massive range of ML methods.
* Supervised, unsupervised, (batch/offline) RL

* Deep neural networks
* Large language models and generative Al

* Different problem settings and algorithms in ML correspond to:

* Different loss functions
* Different parametric models.
* Different algorithms for approximating the best weight vector w.

37



Linear Parametric Model #Linear Functions

 Linear parametric functions are functions f;, (x;) that are linear functions
of the weights w.

* They need not be linear functions of the input x;.

Each feature is a real number
(not a vector or array) Note: Each feature can depend on more than one

Feature 1: element of x;. So, this is ¢, (x;) not ¢ (x; 1)-
- $1(x;)
eature
Inputx; I_’ generator ¢ Feature 2: Linear Regression: Prediction, ;
. . $2(x;) fw(xi) = w11 (x;) + wapo(x;) + -+

Note: The input x; is
avector —an array
of values.

Feature m: Note: This is equivalent to pre-processing the data,

b (x;) converting x; (length d) into ¢p(x;) (length n;f?g




Linear Parametric Model #Linear Functions

 Linear parametric functions are functions f,, (x;) that are linear
functions of the weights w.

* They need not be linear functions of the input x;.
* Thatis, a linear parametric modelTI?las the form:

fw(xi) = 2 wjd;(x;),
=1

where ¢ takes the input vector x; as input and produces a vector of m
features as output. Thatis, ¢;(x;) is the j" feature output by ¢.

* ¢ is called the basis function, feature generator, or feature mapping
function.

39



Multivariate Polynomial Basis

* How does the polynomial basis, ¢, work if x is multidimensional (an array
rather than a number?)

* Multivariate polynomial on inputs x, y:
a+ bx+cy+dxy+ex®+ fy*+ gxy® + hx?y +ix> + -

 Multivariate polynomial on input x; 4, x; :
Wi+ WoX;1 + W3Xjo + WyX;1X;p T WSxfl + W6x52 + W7xl-’1xl-2,2 + ngflxi%z + ngfl + -
* The expression above is f,,(x;) for a linear parametric model using the
multivariate polynomial basis.

* Notice that some ¢;(x;) terms depend on more than one element of x;!
* This termis wgg(x;)

40



Fourier Basis

* Each ¢; is a cosine function with a different period.
 Can optionally include both sine and cosine functions.

* Univariate:
* ¢j(x;) = cos(jmx)
* Approximation of a step function (from Wikipedia “Fourier series”
page)

41



Parametric vs Nonparametric

* ML algorithms are often categorized into parametric and
nonparametric.

* |In general:
* Parametric methods use parameterized functions with weights w.
* Nonparametric methods store the training data or statistics of the training data.
* More precisely
* Parametric:
* Have a fixed number of weights w.
* Tend to make specific assumptions about the form of the function.
* Nonparametric:
* Do not make explicitassumptions about the form of the function.
* Number of values stored tends to vary with the amount of training data (e.g., storing data).
* There is some debate about whether some methods are parametric or
nonparametric.

* Linear regression and regression with linear parametric are canonical examples of
parametric.

* Nearest neighbor algorithms are canonical examples of nonparametric.

42



Optimization Perspective

* Recall:
argmin,, L(w, D)

* Viewing L(w, D) as a function, f, of just the weights (and a fixed data set):
argmin,, f(w)

* Note that this is equivalent to maximizing a different function, where g = —f
argmax,, g(w)

* We could also write x instead of w:
argmin,, f(x)

* The function being optimized (minimized or maximized) is called the
objective function (optimization terminology).

* Inthis case, our objective function is a loss function (machine learning terminology).
* Question: How do we find the input that minimizes a function?

43



Local Search Methods

e Start with some initial input, x,
* Search for a nearby input, x;, that decreases f:

f(x1) < f(xo)
* Repeat, finding a nearby input x;, ; that decreases f (for each
iteration i):
flxiv1) < fx;)
* Stop when:

* You cannot find a new input that decreases f
* The decrease in f becomes very small
* The process runs for some predetermined amount of time

* Called “local search methods” because they search locally
around some current point, x;.

44



“Find a nearby point that decreases f”

* We will consider gradient-based optimizers.

* At any input/point x, we can query:

* f(x): The value of the objective function at the point
df (x)

dx
* This is the gradient, and is also written as Vf (x)

: The derivative of the objective function at the point

45



Question: Is a global minimum a local minimum?
Answer: Yes!

200

150 ~

100 A

=
30 A
0- f
T ‘ T T T T T T T T
0 1 2 3 4 5 6 7 8
" 1
Global minimum: A location where the function Local minimum: A location where all nearby

achieves the lowest value (the argmin). (adjacent) points have higher values. e



200

150 ~

100 -

fix

Question: How can we find a point x;; such that f(x;41) < f(x;)? Thatis, a point that is “lower”? _
Idea: Move a small amount “downhill”



200

150 ~

100

fix)

50 A

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease x; to get x;, ;. Negative slope: Increase x; to get x; 4.

48



Gradient Descent

000000000

* Take a step of length a (a small positive constant) in the opposite
direction of the slope:
Xiy1 = X; — a X slope.
df (x)

dx

, SO We can write:

df (x)
dx
* o is a hyperparameter called the step size or learning rate.

* Note: The slope is

Xiv1 = X — &

49



Gradientdescent, x, = 7, a = 0.001
f(x) = x* —14x3 + 60x° — 70x

200

50 ~

T T T T T T T T T
0 1 P 3 4 5 6 7 8

Question: Why do the points get closer together when we use the same step size, a?



The Gradient (multi-dimensional setting)

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

x-slope: oftxy)

ox
of (x,y)
ay

y-slope:

The gradient is the concatenation
of the slopes along each
dimension/axis:
VFGo) = laf (x,y) 9f (x,y)
ox ' 0y

Note: The gradient is also called
the “direction of steepest
ascent”. [t indicates how to
change each input to go up-hill as
quickly as possible.

Gradient Descent: Move both x
and y in the negative direction of
their slopes. That is, move in the
opposite direction of the gradient:

_ af (xi, yi)
Xiv1 = X — @ £
l
_ af (xi, yi)
Yi+1 = Vi — 3y,
l
OR

(Xi+1, YVi+1) = (x5, 1) — aVifi(x, yi)



Pseudocode: Gradient Descent on f (x)

* Hyperparameter: Step size a. Typically a small constant like
0.1,0.01, 0.001, ...

* Assumption: f is a function that takes a vector (or single real number)
as input, and produces a single real number as output.

* Assumption: f is smooth (differentiable)
* Method:

* Select an arbitrary initial point, x, (a vector).
* For each iteration i, set x;,; = x; — aVf(x;). Equivalently, for each element of x;

(indexed by j):
af (x;)

axi ;
J
* Stop when progress becomes slow or after some fixed amount of time.

Xi+1,j = Xij — &
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Manual derivation of gradient

Gradient Descent for Minimizing Sample MSE

(Linear Parametric Model)

argmin,,, L(w,D)

* Initialize wy, arbitrarily.
* |[terate:
0|
Wit1 < Wi — & —
» Equivalently, for each weight (indexe(

Wit1,j < Wi,j — @7

* To implement this, we need to Know -

aL(Wi,D),?
Wi,j )

What is

Question: Why %, rather
than X;?

Answer: We already used
the symbol j to denote the
weight we are taking the

()ij

(]WU

n d
(}’i = Z Wik Pre (xi))
i=1 k=1 N

d 2
- Z Wik P (x;)
k=1
2

ow;

aL(w;, D) Z
N aw|
i=1
d

derivative with respect to. n
So, we use a different aL(Wi,D) 1
symbol for the index of the EN = ; 2\ vi— Wi,
summation. L i=1 =1
n
aL(w;,D) —1 \\
= 2\ yi— /]
7y n :
! i=1 J3
n
aL(w;, D) -1 5
aWi’j n

Gradient Descent for Minimizing Sample MSE

(Linear Parametric Model)

{ * For each weight (indexed by j):

Wit1,j < Wij

* Where:

—

aL(w;, D)

aWI‘J

6L(WL', D) .

n
-1

aw; ;

n

d
Zz }’i—ZW::,jﬁbj(xz) ¢;(x;)
=

i=1

* So, for each weight (indexed byj):

1
Wigy1j € Wi +a— ZZ Yi — ZW1}¢;(x) ﬁb;(xz)

i=1

a

53



Missing Data

* Question: What can we do if some values are missing in the data set?
 Example: Some students are missing exam scores.

* Answer 1. Remove rows with missing values.

* This can add bias when there is a correlation between when points are missing
and other features/labels.

* This can be effective when only a few rows are missing values.

* Answer 2: Use imputation techniques.
* Replace missing values with the mean or median feature value.

* Replace missing values with the feature values from the nearest neighbor (or k
nearest neighbors).

* Use more sophisticated techniques to estimate the missing values.
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One Hot Encoding

* One hot encoding is a common strategy to avoid assighing meaning to
the encoding of categorical features.

* If the feature has m possible values, it is converted into m features.
* One columnis converted into m columns.

* The value of the j* new feature is 1 if the original feature took its j
value, and O otherwise.

* Example: Original feature: “red”, “green”, “blue”
* Three new features, “is red”, “is green”, and “is blue”
* If “red”, the three new features have values [1, 0O, O]
* |If“green”, the three new features have values [0, 1, O]
* |If “blue”, the three new features have values [0, 0, 1]
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Feature Scaling

* When features have very different scales, it can cause problems for
some ML algorithms.
* Question: Consider a data set with income (range 0 to 1 million) and age (range

0 to 100). If we use nearest neighbor algorithms with Euclidean distance, what
will happen?

* Answer: Points with (relatively) slightly different incomes will be viewed as far
apart relative to points with different ages.

* Note: This is not unique to nearest neighbors algorithms. Most ML algorithms
can struggle when features have very different scales.

* When all features have a very large or small scale, it can change the
necessary hyperparameters in unintuitive ways.

* Example: The step size for running gradient descent to fit a linear parametric
model, using the second-degree polynomial basis, to the GPA data set (see
Data Cleaning Intro.ipynb).
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Feature Scaling

* ldea: Re-scale features.
 Approach 1 (Min-Max Scaling): Normalize to the range [0,1]

* Xnormalized = (xunnormalized _ min)/(max _ min)
* Scikit-learn includes “Scalers” that perform common feature rescaling.

 The fit transform function “fits” the scaler to the data (e.g., calculating min
and max values of features) and then “transforms” the data (applies the
specified rescaling).
 Approach 2 (Standardization):
* Centers the feature (so the average is zero)
* Rescales the feature so that the standard deviation is 1
* Xnormalized = (xunnormalized o mean)/(Standard deviation)

* Several others (robust scaling, normalization, etc.)
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Question: How can we make this model non-
linear w.r.t. the model parameters (weights w)?

d
fw(xi) = 2 WjX; j
=1

xi'l \
|46
Xi,2 —
. "
xl.,3 > W3 > fW(xl)
-
B / Wy




Answer: One way is to apply a non-linear
function, o, to the output.

2
Question: Would o(z) = 5z

d d
work? _— L) — CY .
Answer: No, this is a linear fW(xi) =0 z iji»j fW(xl) o Z W]xl»J

function. This would be
equivalent to multiplying

each weight by 5. It doesn’t Xi1
change the functions that can \ Wy
be represented. Xi2
\ W,
Question: Would ¢(2) = z? X3 > Wy 4@—> fw(xi)
work? .
Answer: Yes, thiswould ... ----""""

result in a non-linear / Wy
parametric model.

Note: The function o is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear o) is called a perceptron. o5



Perceptron

Perceptrons can be viewed as
extremely crude simulations of
neurons.

* Roughly speaking (ignoring
important aspects of biology and
neuroscience), when enough of
the inputs to a neuron are
activated, the neuron becomes
sufficiently stimulated and “fires”
(it becomes activated).

* We can select o to be similarto a
threshold function.

* |fthe weighted sum is below
some threshold for the neuron
to be activated, o outputs 0
(not firing).

* |fthe weighted sum is above
the threshold, o outputs 1

(firing).

Output from
previous neurons

Xi1

)

Xi2

Cell body

Axon

Telodendria pd %

Synaptic terminals

Endoplasmic
reticulum

MitochondrionTﬁDendrite

/
/ % Dendritic branches

X Cell
Dendrites Axon
Body
_ X w,
- D
=
———— The “activation function” decides
Wa whether the “neuron”is firing

based on the weighted sum.



Note: This model
typically outputs 0 or
1, which may not be
what we want for our
parametric model. We
will revisit this later.

Note: 0 squashes the
output to the range
[0,1], hence the name
squashing function.

Wq
Xi2 —
R W,
Xi3 > W3
R
Wy

Activation Function

1.0

0.8

0.6

0.4

Perceptron Output, g{z)

0.2 +

0.0 1

/ Threshold = 15

T T
—-30 —-20

T
-10

T T T
0 10 20
Weighted Sum, z

T
30

T
40

T
50
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Neural Networks: Parametric Models
Comprised of Many Perceptrons

* Recall the graphical representation:

Xi _’Q_" fw(xi)

* |dea: Connect many perceptrons together.

<«

@ This is tedious and

\ too many arrows!
N

\

e
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Neural Network Graphical Depiction

Here arrows between boxes

denote fully connected layers.
Each perceptron in the right-
layer takes the output of each
perceptron in the left-layer as
input.

Idea: Use boxes to represent
layers (columns) of perceptrons.

> xi — —— nan
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Neural Network (Graphical Depiction)

e e e et Bl el 50

Layer1 Layer2 Layer3 Layer L

* In the context of neural networks, perceptrons are often called
units.

 Each layer can have different numbers of units.
* The number of unitsin a layer is often called the “size” of the layer.
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Neural Network (Graphical Depiction)

i = e ()
Input  First Second Output
Layer Hidden Hidden Layer

Layer Layer
* The input, x; is called the input layer.

* The last layer is called the output layer.

* All layers between the input and output layers are called hidden
layers.
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Neural Network (Graphical Depiction)

i = e £
Input  First Output
Layer Hidden Layer
Layer

* Sometimes the input layer is represented by its own rectangle.
* This layer simply outputs x;.
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Neural Network (Graphical Depiction)

For a classification
problem with 10 classes,
how many outputs should

X; =—> — —> i —> 1, (x;) the network have?
Input  First Output
Layer Hidden Layer
Layer

* The number of units in the output layer should equal the number
of outputs of f,, (x;)
* For the GPA-prediction task, x; € R” and y; € R.
* S0, the output layer should have one unit.
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Neural Network (Graphical Depiction)

i — — — e —p —> 1, (x;)

Input  First Output
Layer Hidden Layer
Layer

* If the output of the parametric model should not be “squashed” to
[0,1], the squashing function (activation function) can be omitted
from the output layer.
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Activation Function: Sigmoid

* Sigmoid functions are a class of S-shaped functions.
* The most common one is called the logistic function.

* [tis so common that itis often called “the” sigmoid function.

1
1+e—Z 1.0

Logistic Function (Sigmoid Function)

¢ 0(z) =

0.8

0.6

0.4 4

0.2

0.0

T T T T T T T T T
-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
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Activation Function: Hyperbolic Tangent
Function (tanh)

62-—25

« tanh(z) = &=

eZ+4+e~Z

Hyperbolic Tangent Function

1.00 ~

0.75 A

0.50 4

0.25 +

0.00 +

tanh (Z)

—0.25 A

—0.50 A

—0.75 A

—1.00 A

T T T T T T T T T
-10.0 7.5 =50 =25 0.0 2.5 5.0 1.5 10.0



Activation Function: Rectified Linear Unit
(ReLU)

* ReLU(z) = max(0, z)

RelLU Function

10 A

B_

6_

RelU (z)

T T T T T T T T T
=100 -=-7.5 =50 =25 0.0 2.5 5.0 7.5 10.0



Activation Function: Leaky RelLU

z ifz>0
azifz<0
* Here a is a small constant, typically 0.01.

* Leaky ReLU(z) = {

Leaky RelU Function

10 +

B_

Leaky RelUiz)
(=]
1

EEY
i

%]
|

o
I

T T T T T T T T T
-100 -¥5 —-50 =25 0.0 2.5 5.0 7.5 10.0
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Fully-Connected Feed-Forward Networks

* A fully-connected feed-forward ANN is one where each unit in the
it layer:
 Takes the output of each unitin the (i — 1) layer as input.
* Provides its output to each unitin the (i + 1) layer.

e B e e I e €D

Input  First Output
Layer Hidden Layer
Layer
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Recurrent Neural Network (RNN)

e Recurrent neural networks can have backwards connections
between layers.

* These networks are typically run several times on the same input,
and recurrent (backwards) edges provide values from the previous
runs.

* Recurrent connections provide a form of “memory”

fw(xi)
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Skip Connections

* Skip connections are connections that skip over one or more
layers.

e I e N e Il e D
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What do different layers learn?

* Consider parametric models that take images as input.

* The layers closer to the input tend to learn low-level visual
features.

* Later layers use these low-level features to learn about higher-
level features and concepts.

X; = — — —p o — — — s - —> — —> f,(x;)

5 7 \

Fires if there is an edge passing through position Fires if there is a cow in the image Fires if there is a cow jumping over the moon
(8372, 981) in the image, at an angle of 43 degrees.
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Learning Low-Level Features

* An ANN might use early layers to detect low-level features of an image

* One unit early in the network might “fire” when there is an edge at position (x,y)
in the image, and the edge is vertical.

* Another unit might fire when there is an edge at position (x,y) at an angle of 80
degrees (nearly vertical).
* There may be different units for all of these features at each (x,y) coordinate in
the image!
* Learning to separately detect the same feature at each location in the
Image is wasteful.

* ldea: Create a parametric model (layer for ANNSs) that learns to find and
represent features anywhere in the image.
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Convolutional Layer

* If an image is of size Imgyiqin X IMBpeight, Create a parametric model,
called a filter, that takes as input a small subregion of the image, called

a patch.

* This filter (small
parametric model) is run
on each patch in the
Image.

* The patches can overlap.

* Each patch is a fixed
number of pixels over
from the previous patch.
This number is called the
stride.

patChheight
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One number,
the “feature”
value for this
patch.
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One number,
the “feature”
value for this
patch.
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One number,
the “feature”
value for this
patch.
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One number,

& . the featurg
value for this

patch.

The patch is shifted over by stride
number of pixels each time.
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.
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One number,

& . the featurg
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,—-2.1, ...,1.3,—0.64, ...)
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One number,

& _, the“feature
value for this

patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,—-2.1, ...,1.3,—0.64, ...)

These values are usually
represented as a matrix to track the
position of the patch they were
computed from. 56




Convolutional Layer (Graphical Depiction)

A wider rectangle to
denote that this is a matrix
of numbers, not a vector.

This represents a convolutional layer (blue) applied to an image.
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Convolutional Layer

* A convolutional layer with multiple filters is represented using
many stacked boxes:

[/
[/
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Convolutional Layer

* Convolutional layers can be applied in a sequence!

/,,
;
/
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Max Pooling Layers

* When using convolutional layers with many filters, you can end up with
more outputs from the convolutional layer than there were pixels in the

original image!

* To make the number of values more manageable, a max pooling layer
can be used to downsample (reduce) the number of features.

* A max pooling layer acts like a convolutional layer, but without any

parameters.
* For each patch, it returns the maximum value within the patch.
* Other pooling layers (e.g., average pooling layers) compute other fixed functions
of a patch (e.g., the average value in the patch)
* A max pooling layer typically has a relatively wide stride and/or patch.

* For example, a 2x2 patch with no overlap between patches quarters the number of
values. 90



Flattening Layers

* Convolutional layers output values in a matrix.
* One matrix per filter

* Typical feed-forward layers expect values as a vector.

* Flattening layers convert the output of convolutional layers into
one long vector (rather than a set of matrices).
* Flattening layers have no tunable parameters, w.
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Example from Online:

https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 /—&

(5 X 5) kerr.\el Max-Pooling (5 X 5) kerl.1el Max-Pooling (with
valid padding (2x2) valid padding (2x2) \.dropout)

/_M/_Mr*\f*\

INPUT nl channels nl channels n2 channels n2 channels E | \‘ 9
(28 x 28 x 1) (24 x 24 x n1) (12x 12 xnl) (8x8xn2) (4x4xn2) —
n3 units
* Number of channels = number of filters Why 10 outputs?

« Some concepts beyond the scope of this class (e.g., padding)
* This model has 10 outputs, one per digit (more on this when
we discuss classification)
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Example from Online:

https://developersbreach.com/convolution-neural-network-deep-learning/

Convolution Neural Network (CNN)

Input

. Output
Pooling Pooling Pooling e

Horse

Zebra
Dog

RO NN
QU 0 AT
DO

[
K = :
\

SoftMax
Activation
Function

Convolution Convolution Convolution

+ + +
RelLU RelLU RelU Flatten
Layer

Fully
Feature Maps ———Connected———
Layer

Feature Extraction Classification Probabilistic
Distribution

A

What is “softmax” doing here? 93



Example from Online:

https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

Input Conv Layer BN Layer Pooling Layer Flatten Layer 2 Dense Layers Output
23*4 40%(23*1) 40%(23*1) 40*(5*1) 1200 1*100 123 12

Note the softmax again!

Convolution Max-Pooling

40 filters Batch Normalization Fully-Connected

. With 1*5 filter Flatten Dropout Softmax
4 filter sizes stride 5 keep prob:0.85
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Example from Online:

https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

7

convi

ey R AP S =t This refers to
{52 2 100)

Pocjit P the size of
(37= 1)
each patch

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 x 3
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use
max pooling in this work with a filter size of 2 x 2, no padding and stride 2 which results in a
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs
logits over the number of classes.
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Example from Online:

https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d

/ A7

= = I =
» 2/ o ] = Danger
LA . - I
< /f g L
Wy 11 — = =
/ ]’ 2 — 5 =
Lr,’f'.'-".\r (LV / : :
) = O ] - Damaged
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN coﬁﬁ&uo SOFTMAX
\ 7 ~ I N _J
Aircraft Structural Condition

Feature Learning

Sensing Input Classification
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Coming up...
Convolution Neural Network (CNN)

Input

Pooling Pooling Pooling

N

ANXIA

S
[\ N

0y,

e e __Horse
- JeEEtetetats —Zebra
- {S=mammas=a= “Dog

BN Ay
SR O
V250N \
YOS D@

/

-

SoftMax
Activation
Function

Convolution
RS_LLU Flatte

Convolution

Convglution 0
Kernel RelU RelU

< Feature Maps \ > Layer
|| | |

Feature Extraction Classification Probabilistic
Distribution

To train the model, we need the derivative of the loss\function with respect to each weight.
How can we compute the derivative with respect to this weight in the model? 97



Our old approach (manual derivation) is error prone
and can be specific to a network architecture

Manual derivation of gradient

Gradient Descent for Minimizing Sample MSE
(Linear Parametric Model)

argmin,, L(w,D)

i=1

2
* Initialize wy, arbitrarily. . dL(wiD)
« Iterate: What is —L _ ? Lw,, D) = *Z Yim Qv
9 Wi j 7_7_,_“51 — k=1 2
. g WD 1
Wit1 < Wi @ f\:‘ues;ion‘Why‘ . rather — f\ﬁ: ; j r?\i n ()" = Z Wi k‘ﬁk(X ))
than E;? i..
+ Equivalently, for each weight (indexe ! n s
Answer: We already used oL(w, D) 1 d . . ..
Wisg,j & Wij — @ oot todoneto e o ;Zdu Gradient Descent for Minimizing Sample MSE
derivative with respect to. . .
+ To implement this, we need to know q e saieen aL;xf'_D) l ( (Lmear Parametric MOdel)
summeien o \ » For each weight (indexed by j):
aL(w, n)_izz & dL(w;, D)
dwy n Yo JZ Wig1,j C Wij —a—————

dW:}

aL(w;, D) -1 * Where:
== Zz

aw,

6L(W£,D) —1
dw; n 12(yl Zwlf‘pi(xl))‘f’}(xt)

* So, for each weight (indexed by j):
n

da
1
Wi+1,j — Wi,j + a;z 2 (yl - ZWI,quI(x!)) (;f)}(xl)
i=1 j=1
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Chain Rule (Review)

df(g(x)) df(x)dg(x)

dx  dg(x) dx

or

dz dz dy
dx dy dx




Chain Rule

dz dz dy :
dx dy dx X

‘e
.
.
e
.
a
«
«
vy
Yy
Ty
e,
.....
...
LN |
--------------

dz . . :
———How does changing x change z? =6 (adding € to x increases z by 6¢)

%— How does changing x change y? =2 (adding € to x increases y by 2¢)

£ _How does changingy change z? =3 (adding € to y increases z by 3¢)

dy



Chain Rule

dz dz dy_l_ dz dy’
dx dy dx dy' dx

R
.
.
.

T 2X34+1X5=11 .

.

e 101



Expression Trees

* Math expressions like function definitions can be converted into

expression trees. £(x)
* Eachinternal node is a math operator. ‘
* Each leaf node is a constant or variable. i)
e Example: f(x) = 3x? + 2x
|—“ X |—“ X
3 2 2

X 102




Automatic Differentiation

« Goal: Compute d];ix), for some value of fx0)

X ld = 85
* Example: x = 5 df (x) J 1k \ df(x)
* Step 1: Run a “forwards pass” de
* Evaluate the expression tree, computing
values from the bottom to the top.
* Step 2: Run a “backwards pass”

* Loop over nodes from the top to the
bottom.

* For each node, compute the derivative of X
f (x) with respect to each input of the node. r 5 ”

W |

X
T

S

|l

(NS

U1

d
X

af (xOsan d af(x)

We write x" and x”’ so that we can talk about the two paths, o o




T . df (x) .
Backwards Pass: Multiplication Node FG) ~dout "

« We want to compute df (x)/din; and df (x)/din, dc;;(jt)

* Assume that we know:
* The value of the inputs: in; and in, ~— . [out

* These were computed during the forwards pass
=G

* The derivative of f (x) with respect to (w.r.t.) the output out
of the multiplication function, X.
af (x) df (x)

* Thisis e Jout
* This was computed earlier in the backwards pass by the node
“above” the multiplication node.
,df(x) _ df(x)dout _ df(x)
din, _ dout din;  dout 2
df (x) df (x)dout df(x).
* — = = 114 X
din, dout din, dout
104
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df (x)

. - dout
Backwards Pass: Addition Node Foo
. : : df (x)
We want to compute df (x)/din; and df (x)/din, | ——
* Assume that we know:
* The value of the inputs: in; and in, ~— . [out
* These were computed during the forwards pass
* The derivative of f(x) w.r.t. the output out of the addition ~Lt M
function, +.
+ Thisis 22 Y
dout dout . .
ing in,

* This was computed earlier in the backwards pass by the node
“above” the multiplication node.

_df(x) _ df(x) dout _ df (x) dout

ding dout din;  dout din,
. df(x) _ df(x)dout _ df(x)
din, " dout din, "~ dout
105




Backwards Pass: Exponent Node £

* We want to compute df (x)/0in.
e Assume z is a constant.
e Assume that we know: out

are) . z-1
* The value of the input in from the forwards pass “aout "
* The derivative of f(x) w.r.t. the output out of the
exponentiation function, (-)?.

* Thisis df(x), as was computed previously in the backwards pass in

dout

df(x) _ daf(x)dout  df(x)

din dout din  Jout

X z X inZ~1
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df

Computea

Forwards Pass

for f(x) = 3x* + 2xatx =5
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df

dx

Compute —=for f(x) = 3x%? + 2xatx =5

Forwards Pass
Backwards Pass

f(x)
dc _ > 4 |e
c=75 a=10
X [+ X |
|_> b =25 |_>
3 2 2
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df

Compute —for f(x) = 3x% +2xatx =5

Forwards Pass fix)

Backwards Pass df@) _ ‘d =85 df(x) _ :
dc > 4 |e da

c=75 a=10
X [ X |

i
3 2 2
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df

Compute —for f(x) = 3x% +2xatx =5
Forwards Pass f(x)
Backwards Pass df (x) ‘d =85 df(x)
—1 =1
dC > 4 |e da
c=75 a=10
X [ df(x) _ ? X
db
b =25
3 2 2
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df

Compute —for f(x) = 3x% +2xatx =5
Forwards Pass e
Backwards Pass df (x) ‘d =85 df(x)
=1 =1
dc > 4 |e da
c=175 a=10
e ) 3 o] x
db
i
3 2 2
df(X) _ xl
dX, o "
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Compute Y for f(x) =3x%+2xatx =5

dx
Forwards Pass f )
Backwards Pass df (x) ‘d =85 df(x)
dC > 4 |e da
c=75 a=10
N L df(x) _ 5 % |«
r db
| b =25
B IE
df (x af()|_
™ =3x2x5=30|[ , v et
xll
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df
Compute ™
Forwards Pass

Backwards Pass

for f(x) = 3x% +2xatx =5

df (x)
dx'

=3%x2x5=30

dx

113

f(x)
afe) _, ‘d =85 df(x) _
dc _ > 4 |e da B
c=175 a=10
ot/ G R
db
b = 25
3 .2 2
i af ()| _
xl dx// =2
X"
X
x=5
df(x) _

1



df
Compute ™
Forwards Pass

Backwards Pass

for f(x) = 3x% +2xatx =5

df (x)
dx'

=3%x2x5=30

dx

f(x)
df (x) . ‘d =85 df(x)
dc _ > 4 |e da B
c=75 a=10
@
db
b =25
3 2 2
i af@|_,
xl dxll
xll
X
x=25
d
f(x)=30+2:32

114
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Automatic Differentiation

* Automatic differentiation tools take functions as input
* Typically these functions are implemented as code, e.g., python functions.

* They can then be used to take the derivative of the function with respect to
the arguments (inputs).

. Thgre are several methods for automatic differentiation, with different pros
and cons.

* Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards
pass!). Computes the derivative of the output w.r.t. a single scalar input.

* Reverse Mode Automatic Differentiation: The strategy we have described.
* Requires a forward and backwards pass.
 Can compute the derivative with respect to all inputs with one forwards+backwards pass.
* Thisis most common for automatically differentiating ML models and loss functions.

* Othersinclude symbolic differentiation (manipulating the mathematical expressions to
calculate expressions for the derivative) and finite difference methods (beyond the
scope of this course).
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Autograd

# The same function, but taking a numpy array as input
def f(inputs):

9 87 S el flz,y) =3z* +2y — 7

return 3 * x**2 + 2 * y - 7

# Now, the gradient function returns the gradient with respect to the entire numpy array of inputs
grad f = grad(f)

input = np.array([3.0, 5.0]) # Create the input for which we want the derivatives w.r.t.

gradient = grad_f(input) # Get the derivatives (the gradient)
display(f"The gradient at {input} is {gradient}")

'The gradient at [3. 5.] is [18. 2.]' 116



Deep Learning Libraries

* There are many deep learning libraries that extend autograd to:
* Leverage low-level compiled code for faster runtimes.

 Enable forward and backwards passes on the GPU rather than CPU (more
on this later).

* Have built-in implementations of
e Common loss functions
e Common activation functions

« Common network layers
* Fully connected feed-forward
* Convolutional layers
* Pooling layers
* Etc.
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Defining a Neural Network Architecture
Defining a Parametric Model

e Extend the nn .Module base class

* The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

* Implement two functions:

* 1nit (self):Define the different layers (number of units, number
of inputs) and different activation functions that will be used.

* forward (self, x):Perform aforward passoninputzx.

* You do not need to implement any gradients or the backwards

pass!

* PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.
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Note: This modelis bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

class FullyConnectedNetwork(nn.Module):

def init (self):
# First call the nn.Module constructor to initialize other parts of the model. Always do this first.
super(FullyConnectedNetwork, self). init ()

# Define layers. The lines below create the layers (memory is allocated for the weights here).

self.fcl = nn.Linear(9, 1024) # First hidden layer with 1024 neurons and 9 inputs.
self.fc2 = nn.Linear(1024, 512) # Second hidden layer with 512 neurons and 1024 inputs.
self.fc3 = nn.Linear(512, 128) # Third hidden layer with 128 neurons and 512 inputs.
self.fc4 = nn.Linear(128, 1) # Output layer with 1 neuron and 128 inputs.

# Define activation function.
self.relu = nn.ReLU()

def forward(self, x):

Pass data through the network

self.relu(self.fcl(x))

self.relu(self.fc2(x))

self.relu(self.fc3(x))

= self.fcd(x) # No activation after the output layer
return x

X X X X #=
Il

11€



Loss Function
* PyTorch has many built-in loss functions, including MSE:

loss_function = nn.MSELoss()

Optimizer

* PyTorch has many built-in loss optimizers, including gradient
descent (SGD), and Adam (SGD with a specific adaptive step size
method).

* Several optimizers are discussed in the Jupyter notebook.
e Adam is the most common, and what we will use.

optim.Adam(net.parameters())

optimizer
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epochs = 100 # The number of epochs to run
for epoch in range(epochs):

# Zero the gradients

optimizer.zero_grad()

# Forward pass
y_pred = net(X_train_tensor)

# Compute loss
loss = loss_function(y pred, y train_tensor)

# Backward pass and optimize
loss.backward()
optimizer.step()

# Print statistics
if epoch % 10 ==
print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}") 121



Runtime
* My work desktop has an Intel iI9-9900k with 16 cores (CPU).

e [talso has an RTX 2070 GPU

* This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special
“Tensor” cores)

* These GPU cores are limited in comparison to CPU cores.
* No branch prediction
* Limited cache

* Shorter pipeline (typically)
* Slower clock (1.605 GHz vs 5 MH2z)

* Not designed for parallel processing (many processes running at once)

* Designed to perform many simple operations like dot products
efficiently and in parallel
* These operations are useful for displaying graphics (e.g., applying simple
1;_urr1]c_tior)1s to each pixel on the screen between every frame, changing things like
ighting
* They are also useful for ML! Runnin% an ANN means computing a (ot of dot

products (and some non-linearities).
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net = FullyConnectedNetwork() # Create a new network to train from scratch

optimizer = optim.Adam(net.parameters()) # Create the optimizer for this network
|device = torch.device("cuda"™ if torch.cuda.is_available() else "cpu")l # Check if CUDA (GPU) available
display(device) # Confirm that the GPU is being used
net.to(device) # Move the network to GPU if available
X_train_tensor = X_train_tensor.to(device)| # Also move the tensors to the chosen device
y_train_tensor = y train_tensor.to(device) (8] v 369
epochs = 100 # Number of epochs
for epoch in range(epochs):
optimizer.zero_grad() # Zero the gradients o PR
y_pred = net(X_train_tensor) # Forward pass ' '
loss = loss_function(y_pred, y_train_tensor) # Compute the loss for printing/plotting
loss.backward() # Backwards pass
optimizer.step() # Update the weights using the optimizer
if epoch % 10 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")

|net.t0('cpu'}| # Move the model back to the CPU

Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the»;
model/weights to a file). Leave on the GPU if you will only run it on the GPU.




Overfitting

* Recall that the training error for nearest neighbor (NN) was zero,
but the testing error was large.

* NN essentially “memorized” the training data, and gave good predictions
for the training data.

* The model did not generalize to new inputs: it had high errors for points
not in the training data.

* When this happens using parametric models, it is called
overfitting.
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Plotting Training vs Testing Loss (General Case)

Idea: Stop training when the
testing loss starts increasing.

Loss

Overfitting begins

A

Testing loss

Training loss

>

Iteration or Epochs
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Overfitting and Model Complexity/Capacity

 Notice that we can’t overfit this
data using a line!

* The model complexity or model
capacity refers to a parametric
model’s ability to represent
general functions.

* Models with higher

complexity/capacity can represent
more functions.

* Models with higher
complexity/capacity are more prone
to over-fitting.

Linear and 10th Degree Polynomial Fit to Points with Gaussian Noise

—— Linear Fit
10 4+ —— 10th Degree Polynomial Fit
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Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases.
* Typically split data into training, validation, and testing
* Stop training when the error on the validation set begins to increase
* This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
* Complete details are beyond the scope of this course.

* Regularization terms increase the loss the farther the weight vector is
from zero: Lyeww(W, D) = L(w, D) + A||w||

* Often usingthe L1 norm, ||w|| = Zj|wj| orthe L2 neem ||w]| = |3, w?.
3. Other strategies (e.g., dropout)
4. Use alarge network!

||-]| denotes a norm (a
notion of “lengtq;’)



“Use a large network”: Double Descent

* Large networks seem like they should be particularly prone to

overfitting.

* When trained sufficiently on large amounts of data, empirical
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called
double descent, is an
active research topic!
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Regression = Classification

* Two changes for parametric methods:

1. Change the parametric model so that it outputs a discrete label as a
prediction rather than a number

2. Select aloss function that is appropriate for classification tasks

* Note: Techniques differ for non-parametric methods
* E.g., we discussed nearest neighbor (and variants) for classification

* E.g., there are other custom non-parametric methods for classification
like decision trees, which are beyond the scope of this course.

* Terminology: Each possible value of the label is called a class
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Parametric models for classification

* Assume m classes (possible values of the label)
* Change parametric model to have m outputs rather than one.

* Deterministic:
* Class with the highest outputis the predicted class.
 Simple and effective
* Gradient of the loss function is typically zero, making this impractical for
training.

* Stochastic:
* The m outputs are converted to a probability distribution over the classes, and
the label is sampled from this distribution.
* The larger the output, the higher the probability of the class being selected
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Stochastic Models: Softmax

* The softmax function converts the m outputs to a distribution
over the m class values.

* Let outq, ..., out,, be the model outputs.

* Probabilities cannot be negative, so convert each output to a
nositive value:

outq, ...,out,, = et .  eO0Ulm

* A probability distribution must sum to one, so divide each by the
sum:

outy outs outy

out;, ~ R €
PI‘( ;= y) — Z}T}_l oty

€ €

m out;, . m
k=16 k=1

e
RRRE m
k=1

eOuty ’




Binary Classification

» Special case where Y; € {0,1}orY; € {—1,1}

* Typically 1 is called the “positive class”

 Parametric models need only have one output, notm = 2
* This output encodes the probability of the positive class.
* The probability of the negative class is 1 — Pr(positive class).

* The output of the model must be scaled to [0,1].
* This can be done using the logistic function (sigmoid):

~

Pr(Y; = 1) = o(outy),

1
1t+e 7

where o (z) = , and

~

Pr(Y; =0) =1 —Pr(Y; = 1).

132



Loss Functions for Classification

* There are many loss functions for classification.
* You can make your own that is tailored to your problem!

* Cross-Entropy Loss (log loss) is the most common.

1 :
Cross-Entropy Loss(w, D) = —— Z In (PI(Y,} — Y;))
n
i=1

1, . : : :
* The — 18 sometimes omitted (it makes no difference).
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Binary Cross-Entropy Loss
Cross-Entropy Loss(w, D) = t Zﬂ: In (Pr(Y.,; — ﬁ))
| L .

*Whatif¥; € [0.1]not¥; € {0,127 Notevlocnctarn et

n
1 X N
Cross—Entropy Loss(w, D) = —EZ Y;In(Pr(¥; = 1)) + (1 —Y) In(Pr(¥; = 0))
i=1

* Question: WhenY; € {0,1} is this equivalent to the first expression?

* Answer: Yes!
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Logistic Regression

* Logistic regression uses the logistic model or logit model
* Essentially a linear parametric model for classification

. _— a(w-dpX)))

1 — e_w'ﬁi‘(xé) .

Pr(Y; = 1|X;) =

* Use cross-entropy loss
* Equivalent to maximizing the “likelihood” of the data given the model.

1 .ﬁ
Cross-Entropy Loss(w, D) = —— Z In (PI‘(E — Y;))
n
i=1
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Stochastic =2 Deterministic Models

* During training often models are viewed as stochastic (minimizing
cross-entropy loss).

* If the model is highly confident of the class for an input, the output
for that class will be come large

* No matter how large it is, the resulting probability of the label will not be 1

Pr(Y; = 1|X;) =

1

1+ e—wo(X)

* To enable models to make deterministic predictions, often models
are evaluated (and then deployed to make predictions for new
data) as deterministic models, even if they are trained as
stochastic models.
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We saw another example of over-fitting, and

used early stopping to prevent it:

Training and Testing Loss Over Epochs

| —— Training Loss
1.2 1 Testing Loss

T T T T T T
] 2000 4000 6000 8000 10000
Epochs

Loss

1.2 4

1.0 4

0.8 1

0.6

0.4

0.2

0.0

Training and Testing Loss Over Epochs

—— Training Loss
Testing Loss

T
500

T
1000

T
1500
Epochs

T
2000

T T
2500 3000
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Evaluation Metric: Accuracy

The accuracy Is the proportion of correct predictions to the total number of predictions:

aCCuracCy —

* While relatively simple,
accuracy can be
misleading if the class
distribution is imbalanced.

Empirical probabilities of labels in the test set:
Label ©: ©.39
Label 1: ©.31
Label 2: ©.31

* Inthis case, 96% accuracy is
decent!

number of correct predictions

total number of predictions

# Switch model to evaluation mode
model.eval()

# Calculate the number of correct predictions
with torch.no_grad():
outputs = model(X_test)
_, predicted = torch.max(outputs.data, 1)
total = y_test.size(9)
correct = (predicted == y_test).sum().item()

# Calculate accuracy
accuracy = 100 * correct / total
print(f'Accuracy on the test set: {accuracy:.2f}%")

v/ 0.0s

Accuracy on the test set: 96.00% 138



Evaluation Metric: Confusion Matrix

* Accuracy doesn’t provide information about what kinds of errors
are common

* Which classes are often confused?

* The confusion matrix provides this information. It is a matrix with
one row per class and one column per class

* The (i, /)™ entry holds the probability that a row with actual class i is
classified as class .

* [n some cases the matrix reports the number of errors of each type, rather
than the estimated probability.
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Evaluation Metric: Confusion Matrix

* Accuracy doesn’t provide information about what kinds of errors
are common

* Which classes are often confused?

* The confusion matrix provides this information. It is a matrix with
one row per class and one column per class

* The (i, /)™ entry holds the probability that a row with actual class i is
classified as class .

* [n some cases the matrix reports the number of errors of each type, rather
than the estimated probability.
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Evaluation Metric: Precision, Recall, and F1 Score

* For binary classification tasks, statistics like precision, recall,
and the F1 score are often used to evaluate models.
* Note: These are often used even when the loss function used in training
measures something else, like cross-entropy loss.

* These metrics are expressed in terms of the following statistics:

1. True Positive (TP): The number of points (rows) with label 1 and where the model predicted 1.
2. False Positive (FP): The number of points (rows) with label 0, but where the model predicted 1.
3. False Negative (FN): The number of points (rows) with label 1, but where the model predicted 0.
4. True Negative (TN): The number of points (rows) with label 0 and where the model predicted 0.
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Deterministic Classifiers

Precision measures the ratio of the correctly predicted positive labels to the total predicted positives. That is:

TP

Precision = TP - FP

Recall measures the ratio of the correctly predicted positive labels to the total number of positives. That is:

TP
TP + FN'

Recall =

Stochastic Classifiers
Precision = Pr(Y; = l\ﬁ = 1),

Fan

Recall = Pr(Y; = 1]Y; = 1).
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F1 Score

* The F; score (often written “F1 score”) combines precision and
recall:

precision - recall

F{ Score = 2 — .
precision + recall

* This is the harmonic mean of the precision and recall
* Places more weight on low values relative to the arithmetic mean

* F1 score ranges from 0 to 1, where 1 denotes perfect precision
and recall, and 0 means that either precision or recall is zero.

143



Example ROC Curve

I /
e Curves closer to the top left I f—/
corner correspond to better 08— =
models.
* A classifier thatignores the g 06
Inputs and outputs a uniform =
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Evaluation Metric: Area Under the ROC Curve

(AUC)

* The AUC summarizes the ROC curve with a single number: The

area under the ROC curve.
* The best possible valueis 1.

* A pessimal model (one that always gets the prediction wrong)

would have an AUC of zero.
e The random classifier achieves an AUC of 0.5
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Generative Al

* Generative Al methods create new content like text, images,
music, or other data, often mimicking some aspects of human
creativity.

* Generative Al is often (not always!) a form of unsupervised
learning (learning from data with no labels).

* When presented with a data set D = (X;){-,, the agent’s goalis to create
new data points that are indistinguishable from the datain D.

* Two core methods in generative Al are variational autoencoders
(VAEs) and generative adversarial networks (GANSs).
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Variational Autoencoders (VAES)

. Latent .
Input Encoder Space Decoder Output
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Generative Adversarial Networks (GANS)

Input (noise vector)

Input (noise vector)

Fake Data, Label=0

Real Data, Label=1

» Generator » Fake Data
» Generator » Fake Data
Input (noise vector) » Generator » Fake Data
|
» Discriminator » Predictions

» Classification Loss
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Conditioning on Text

e VAEs and GANs can be conditioned on text.

* In a VAE, the text is first converted into its own embedding (numerical
vector representation)

* The text (represented as a vector of numbers) is then appended to the
Input to the decoder.
* The encoder does not see the text — it just learns a representation for the image.

* The decoder is given the latent representation of the image and the text
description.

* To be effective, the distribution of the latent representation conditioned
on the text must still be normally distributed.

* Otherwise, when generating a new image, the latent representation of the image
that is sampled may not be compatible with the provided text query.

* Mechanisms for ensuring this are beyond the scope of this course.
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Conditioning on Text

* To condition a GAN on text, the generator receives both the noise
and text embedding as input.

* |ts goal is to generate an image that corresponds to the text embedding
that is indistinguishable from images and their corresponding text
embeddings in the training data.

* The discriminator also takes the text embedding into account.

* |[ts goal is to determine whether the image provided for the text
embedding corresponds to an image from the real data set or the fake
data set.

* Note: Both training VAEs and GANs that can be conditioned on
text requires training data containing both images and
corresponding text descriptions!

150



Large Language Models (LLMs)

* Large parametric models applied to text (or audio) generation.

* Input: A sequence of words, split into tokens
* Atokenis a sequence of letters/punctuation
* Often atoken is a word or a part of a word

* Output: The next token

* Training: This is a standard classification problem!
* Generate input-output pairs from human-written text
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Foundation Models

* Modern parametric ML models are expensive to train

* Instead of everyone training new models, large models can be
trained once and shared.

e These are called foundation models.

* Examples: GPT (OpenAl), BERT (Google), Llama (Meta), and many
others.
* Some can be found at https://huggingface.co/
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Finetuning Models

* When using foundation models, often there is a need to change
the model in some way.
* Provide it with additional training data on a specific topic
* Change the tone of its responses
* Change it so that responses are more conversational
* Change it so that it excels at summarizing reviews

* When a foundation model is further trained (often using a different
data set and loss function!), it is called fine-tuning.
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Finetuning Models Efficiently

* Even finetuning a large model can be infeasible without significant
hardware and funding.

* One area of research involves finding more efficient ways to
finetune models.

* Example: Low Rank Adaptation (LoRA)
* Focusses on changing weights in a section of the network (attention and
feed-forward parts of a transformer).

* Uses low-rank matrices to represent the change to the weights.
* Thisis a way of using a small number of weights to tune a larger number of weights

* |fthere are m X n weights W, we tune two matrices A and B of sizesm X k and k X
n, where k is relatively small. The change to weights W is then AB.
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Executing Models Efficiently

* Running (not just training!) large parametric models can also be
expensive.

* Another area of research focusses on making the execution of
large models more efficient

* Examples:

* Model pruning: Finding unimportant weights and parameters that can be
removed.

* Quantization: Reducing weights from 32 bits to 8 bits.

* Knowledge Distillation: Train a smaller model to mimic the outputs of a
larger pre-trained model.
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Serating

Thank you.

Degginmenic
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